关闭

CUDA知识普及

IT168 CUDA专题: http://www.it168.com/tag/3263_1.shtml 异构技术构建云计算平台:http://tech.it168.com/a2011/1215/1289/000001289157.shtml GPU优化与实例分析:http://tech.it168.com/a2011/1215/1289/000001289225.shtml...
阅读(697) 评论(0)

OpenCV中GPU模块使用

CUDA IT168的文章系列:文章有代码 CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行;2.传输数据到GPU;3.确定...
阅读(828) 评论(0)

CPU+GPU异构计算完全解析

工欲善其事,必先利其器。有一个好的计算工具是必须的! 并行计算:让处理的速度变得更快: 相对于串行计算,并行计算可以划分成时间并行和空间并行。时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题。以程序和算法设计人员的角度看,并行计算又可分为数据并行和任务并行。数据并行把大的任务化解成若干个相同的子任务,处理起来比任务并行简单。...
阅读(2542) 评论(0)

DNN:DL讨论与DNN经典论文汇总

引言: 达尔文的进化哲学:适者生存!其原因不是因为适者生存,而是因为不适者都会死去; 没有免费的午餐定理:没有普适性的优越算法,如果一个算法对一个或一些应用相对其他算法表现极大的优越性,那么在特定领域必然也体验足够的弱势; 纯科学的存在价值:不能转化为应用的科学是没有价值的,纯科学的存在价值,就是维持整个科学体系的严谨性;...
阅读(1590) 评论(0)

CUDA5.5入门文章:VS10设置

在开始学习之前,首先要做的就是找到一本好的教材,要知道一本好的教材可以让我们更加轻松地入门。在看了一些个CUDA编程相关的教材之后,我向大家推荐的一本教材叫做《GPU高性能编程CUDA实战》。本教材相比其他的教材而言,它讲得比较细,对于一些我们可能不太明白的知识点做了详细的说明。而且这本教材以层层深入的方式向我们展示了GPU的世界,从而引领我们进入CUDA编程的大门。        其他的教材的...
阅读(2013) 评论(0)

WinAPI使用: 时间,线程,中断

(1):C/C++获取当前系统时间:http://www.cnblogs.com/mfryf/archive/2012/02/13/2349360.html 不过当计算算法耗时的时候,不要忘记second,不能只要用Milliseconds来减,不然后出现负值,若是算法耗时太长就得用minutes啦。再不然,就hours…… //方案— 优点:仅使用C标准库;缺点:只能精确到秒级 ...
阅读(562) 评论(0)

边缘提取和场景分割 学派?

显著性轮廓提取、轮廓编组综述要看的内容(一)Berkeley学派: http://blog.csdn.net/visionfans/article/details/6243831 Berkeley学派 Jitendra Malik 不用介绍了吧,太大的牛了。如果要介绍起来,可要花不少篇幅了。研究兴趣:分割,知觉组织,纹理,立体视觉,识别等。他带的26个学生都在学术和工业领域有重要影...
阅读(1800) 评论(0)

-1.#IND000 &&图像类型转换

(1):float acos(float x) 参数x的范围为-1.0f到1.0f之间,返回值范围在0.0f到3.141592653f之间,值得注意的是:当x超出[-1.0f,1.0f]这个范围时此函数将返回一个-1.#IND000值,代表无穷小而编译器会不给出任何提示,通常此将会导致程序错误或崩溃,所以以后要注意数学函数的参数范围了. 可以通过以下代码进行调试:  float test = ...
阅读(616) 评论(0)

三维点集拟合:平面拟合、RANSAC、ICP算法

RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。该算法最早由Fischler和Bolles于1981年提出。...
阅读(3433) 评论(0)

PyDev的使用-高效Py编程

很久没有接触到Python了。以前都是在用2.7版本的,这次索性就安装3.2的了。一般的小程序其实自带的IDLE就足够用了。但是其他的或者喜欢用Eclipse的,pydev成了最佳的选择。...
阅读(1332) 评论(0)

深度学习:又一次推动AI梦想

几乎每一次神经网络的再流行,都会出现:推进人工智能的梦想之说。偷笑 “我们谈到AI时,意味着高度抽象,Deep Learning是抽象的一种方式,但它远不是全部。通过神经网络能够识别动物,并不意味就理解了世界,我甚至将其看做‘模式识别’而非‘智能’”,Seide这样认为:“‘深’对智能系统来说很重要,但它不是智能的全部。语音识别可以视为AI领域的一个缩影,DNN也只是语音识别技术中的一部分——若从代码长度的角度考量,它甚至只是全部技术中很小的一部分。”...
阅读(692) 评论(0)

BD、人脸识别、KATA、Gray码--程序员杂志文摘

Kata(路数练习)的思想就是通过反复练习来实践编码,在不断使用各种技能的过程中形成肌肉记忆。Kata从很多方面改善工作流程,比如编写测试、处理错误甚至编辑器的使用,更熟悉语言技巧。 有人做过一...
阅读(768) 评论(0)

三维重建:Kinect几何映射-SDK景深数据处理

对物体进行测量     像上篇文章中对深度值测量原理进行讨论的那样,像素点的X,Y位置和实际的宽度和高度并不一致。但是运用几何知识,通过他们对物体进行测量是可能的。每一个摄像机都...
阅读(1359) 评论(0)

《SLIC Superpixels》阅读笔记

超像素在计算机视觉领域越来越流行。但是,低计算量的算法却很少。我们发明了一种原创的算法,使像素聚类为五维颜色和图像层,用来生成简洁整齐的超像素。我们的研究结果非常简单易用,效率很高,具备很好的实用价值。实验证明我们的算法计算消耗低,但是却达到或者超过了其他4种最新的(state-of-art)方法。这种结论是通过比较boundary recall和under-segmentation error得出的。...
阅读(1479) 评论(0)

中国企业系列

企业才是科技发展的最终力量,所以关注企业的发展是关注社会发展的重要途径之一。 浪潮之巅:吴军:中国公司和美国股市的恩恩怨怨 C++primer:作者Stanley B.Lippman谈C++语言和软件产业的发展 C++primer:作者Stanley B.Lippman谈C++语言和软件产业的发展 http://www.csdn.net/article...
阅读(601) 评论(0)

关于抠图的一些文章方法收集

结合深度场景,提取支撑面,是一个人渐进分割的好办法。既然可以利用深度图,那么便最大化利用深度图像; 分割支撑面以后,可以利用抠图算法,把RGB剩余的像素载进行抠图: 本文详细介绍了GrubCut、graphCut、Meanshift算法和一些代码데演示结果。...
阅读(1205) 评论(0)

数学空间引论

曾经在豆瓣上看到了一篇数学进阶的文章,是翻译过来的,内容是:从基本算术开始,引出未解决的问题;逐步递进,直至黎曼流形,拓扑空间等等。内容是很浅显易懂,不过也算得上长篇大论了。...
阅读(546) 评论(0)
    个人资料
    • 访问:824553次
    • 积分:11521
    • 等级:
    • 排名:第1414名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:180条