关闭
当前搜索:

Android开发之拍照功能实现

参考链接:http://www.linuxidc.com/Linux/2013-11/92892p3.htm 原文链接:http://blog.csdn.net/tangcheng_ok/article/details/7036871 增加使用相机和写入权限: 主程序代码: package com.example.carejuly...
阅读(309) 评论(0)

安卓多线程——AsyncTask

在采集视频的同时需要对视频进行实时处理,因此要使用到多线程。        AsyncTask是android提供的一个处理异步任务的框架,相当于Handler+Thread。相比而言,AsyncTask的优点是封装良好,代码简洁。 使用AsyncTask可以使你在后台执行耗时任务(doInBackground)并将结果反馈给UI线程(onPostExecute),方便UI线程更新界面...
阅读(410) 评论(0)

C++的Android接口---配置NDK

借助于NDK,在Eclipse中可以直接使用C++语言开发Android程序。...
阅读(510) 评论(0)

安卓SDK之YUV-Image

安卓YUV_IMage包含四元组的YUV数据,contains YUV data and provides a method that compresses a region of the YUV data to a Jpeg,提供了一个向jpeg格式压缩的方法。...
阅读(2035) 评论(0)

DNN结构演进History—CNN( 优化,LeNet, AlexNet )

CNN的二维处理递进结构天然适合图像处理,直接把图像模式识别问题从特征提取-模式识别压缩为模式识别一步完成,和传统模式识别方法框架上都已经有了本质的区别。 从没有感知域(receptive field) 的深度神经网络,到固定感知域的卷积神经网络,再到可变感知域的递归神经网络,深度学习模型在各种图像识别问题中不断演进。曾经爆炸式增长的参数规模逐步得到有效控制,人们将关于图像的先验知识逐渐用于深度学习,大规模并行化计算平台愈加成熟,这些使我们能够从容应对大数据条件下的图像识别问题。...
阅读(2213) 评论(0)

CNN结构:SPP-Net为CNNs添加空间尺度卷积-神经元层

考虑到传统的CNN构架的输入图像的尺寸都是固定的(例如:256*256),这种人工改变输入图像的尺寸破坏了输入图像的尺度和长宽比例。 SPP-Net使用空间金字塔池化实现多尺度输入; SPP只对原图进行一次卷积,得到整张图的feature map,然后找到每个候选框zaifeature map上的映射patch,将此patch作为每个候选框的卷积特征输入到SPP layer和之后的层。...
阅读(853) 评论(0)

VR: AR和VR演进哲学

Facebook 20亿美元(4亿美元+16亿美元股票换购方式)收购虚拟现实厂商Oculus 引爆AR产业,索尼不温不火逐步演进的头盔项目也该加速了。最近Oculus rift发布了商业版本:Oculus rift发布,体感游戏引入现实,AR游戏看似在15年的E3展会上变得火爆,热闹之后还有很长的路要走。         看看我们需要什么样的游戏?         黑白斯方块也可以让人不亦乐乎...
阅读(701) 评论(0)

使用OpenCV 随机森林与GBDT

随机森林顾名思义,是用随机的方式建立一个森林。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的。...
阅读(1717) 评论(1)
    个人资料
    • 访问:946994次
    • 积分:12825
    • 等级:
    • 排名:第1207名
    • 原创:294篇
    • 转载:292篇
    • 译文:29篇
    • 评论:195条