关闭

三维重建:闭环检测

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 三维重建过程中,滤波方法可以看做是一种追踪方法。EM方法的长期使用造成在相对整个世界坐标系中累计误差的指数级增长。若是检测到可信的闭环,闭环之内的标记帧的位姿可以全部进行误差矫正,重新调整在世界坐标系中的位置。...
阅读(799) 评论(0)

三维重建:SFM中BA的并行化

借鉴于运动中重建,把所有的误差平均到每一个选定的关键帧里,对于帧数较多时,可以使用数据并行化。...
阅读(357) 评论(0)

图像局部显著性—点特征(SiftGPU)

SIFT的计算复杂度较高。 SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)...
阅读(440) 评论(0)

C++:C++在图片特定区域之外产生随机数

第一种:在某个数之前生成随机数;第二种,生成随机数,加上某个数,然后截断;第三种,指定范围内生成随机数;...
阅读(161) 评论(0)

三维重建:SLAM相关的一些术语解释

还是不要看了,高翔的科普读物已经出版了,读他的《slam十四讲》就可以了。 SLAM是一个工程问题,再次复习一下工程中可能用到的名词解释。...
阅读(695) 评论(0)

OpenCV:OpenCV目标检测Boost方法训练

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年(Adaboost原理与推导)提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器。同时,在 每一轮中加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数。...
阅读(397) 评论(0)

OpenCV:OpenCV目标检测Hog+SWindow源代码分析

HOG检测计算大致的函数调用堆栈。...
阅读(370) 评论(0)

OpenCV:OpenCV目标检测Adaboost+haar源代码分析

Haar+Adaboost检测计算大致的函数调用堆栈。...
阅读(713) 评论(0)

OpenCV:OpenCV中的 parallel_for 和opencv parallel_for_

OpenCV使用OMP完成并行运算,在使用AdaBoost检测的时候,在cascadedetect.cpp 里面,大量使用 parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,candidatesVector,...
阅读(747) 评论(0)

nvcc fatal : Unsupported gpu architecture 'compute_11'

使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11' 问题。原因是CUDA7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。...
阅读(964) 评论(0)

AI:狄拉克之海上的涟漪

写的太糙,其中还有一些理论错误,来不及修改! 当他试着用一种轻松的口吻诉说一些事情时,我会明白,其实我们都明白,在他的心里绝对不是平静,而是难以平复的涟漪。即使如波浪般翻滚的情绪,总是被他压制,在一个如胸怀宽广的海洋里,再大的风浪也只是涟漪。...
阅读(482) 评论(0)

AI.框架理论.语义网.语言间距.孤单

AI几乎是计算机科学家的梦想,自动化比计算机发展的要早的多。早期的自动化节省了大量人力,激发了人类懒惰的滋长和对自身进化缓慢的郁闷,有人希望自己创作的机器能够更智慧,可以省去自己动手操作的麻烦,把人本身....这是一个哲学问题了,至于源头,我已不清楚人生意义的一千种解释。...
阅读(848) 评论(0)

图像局部显著性—点特征(Fast)

Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。...
阅读(494) 评论(0)

图像的全局特征--HOG特征

它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主。...
阅读(461) 评论(0)

图像局部显著性—点特征(FREAK)

参考文章:Freak特征提取算法  圆形区域分割...
阅读(335) 评论(0)

图像局部显著性—点特征(SURF)

2006年的SURF(2006年的ECCV);SURF算法是对SIFT算法加强版,同时加速的具有鲁棒性的特征。第二、标准的SURF算子比SIFT算子快好几倍,并且在多幅图片下具有更好的鲁棒性。SURF最大的特征在于采用了harr特征以及积分图像integral image的概念,这大大加快了程序的运行速度。...
阅读(1114) 评论(0)

图像的全局特征--用于目标检测

图像的全局特征可以直接用于图像分类和目标检测,基于图像块提取特定维度的特征,常用的全局特征有HOG特征、HaarLike特征、LBP特征等。...
阅读(861) 评论(0)

图像局部显著性—点特征(GLOH)

2005年MIko等人提出的SIFT的变子,改进为关键点周围的区间划分,由田字格划分修改为 八象限圆格划分;在很大的一个训练集上训练得到PCA模型,再将272维直方图映射到一个128维的描述子。在整体的测试中,比SIFT性能有显著的提高。...
阅读(543) 评论(0)
    个人资料
    • 访问:830397次
    • 积分:11574
    • 等级:
    • 排名:第1417名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条