关闭

NLP:单词嵌入Word Embeddings

我想从深度学习研究的一个非常有意思的部分讲起,它就是:单词嵌入(word embeddings)。在我看来,单词嵌入是目前深度学习最让人兴奋的领域之一,尽管它最早是由Bengio等人在十多年前提出的(见注解3)。除此之外,我认为它们能帮助你通过直觉来了解为什么深度学习如此有效。...
阅读(180) 评论(0)

三维重建面试7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。...
阅读(1834) 评论(0)

三维重建面试6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运送到了未知的地方,此时,人质就无法给自己定位了。...
阅读(1735) 评论(0)

三维重建面试5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。...
阅读(1867) 评论(0)

三维重建面试4:Jacobian矩阵和Hessian矩阵

在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式.。还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,Hessian矩阵的要求是函数f对所有变量Xi的所有二阶导数都存在。...
阅读(1329) 评论(0)

三维重建面试3:如何形象地理解四元数

各种位姿变换都有其特定的缺陷,使用旋转矩阵在变换角为0或者pi/2时会出现病态矩阵,使用欧拉角容易出现万向锁,使用四元数可以降低位姿变换-旋转平移运算的计算量。 比如:两个正交旋转矩阵的复合需要27次乘法和18次加法,而通过四元数的形式只需要16次乘法和12次加法,降低1/3的计算量。但是四元数的不可交换性,往往导致令人意外的结果。...
阅读(1263) 评论(0)

人工机器:NDC-谷歌机器翻译破世界纪录,仅用Attention模型,无需CNN和RNN

NTM的成熟体DNC竟然达到了这种能力,不知道进化成完全体会是什么样子。竟然在机器翻译的准确率上超过了已经公布的所有模型,不愧是最接近现阶段最接近图灵机的有限图灵机。 在数码宝贝中,我最喜欢的是阿和的加布兽进化的究极体数码宝贝——钢铁加鲁鲁,其使用的武器绝对冷冻气——就洋溢着极其欠揍的高冷味道。...
阅读(608) 评论(1)

Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

“祖母细胞”(grandmother cell),这种学说的核心观点认为人脑中存在一些“超级神经元”,单独一个这样的神经元就能对一些复杂的目标(如人脸)有特异性反应,而不需依靠大量神经元相互协同工作。 还原论(reductionism)是个哲学概念,强调分析一个复杂事物时必须首先将其分解成相对简单的部件,然后逐一进行分析再组合。 具体到对人脑视神经机制的研究,还原论的代表是20世纪70年代开始兴起的Marr视觉理论框架[5],整体论的代表是20世纪20年代出现的Gestalt理论[6]。...
阅读(297) 评论(0)

三维重建面试2: 地图构建-三角测量

在三维重建过程中,如果使用了IMU-惯导系统,一般可以得到一个大致可信的相机位姿转换。基于IMU短时间可信的原则,重建问题着重在地图的构建问题,即根据图像来获取点集的空间位置(六自由度),重要的一点的是获取深度信息。...
阅读(368) 评论(0)

三维重建面试1-位姿追踪:单应矩阵、本质矩阵和基本矩阵

本文所写与原文相距甚远,如有疑问,请拜访原文。 原文链接:单应矩阵Homograph matrix、本质矩阵Fundamental matrix、基本矩阵essential matrix 根据图像来估计位姿,一般称之为位姿追踪。非退化状态下可是根据匹配点求解Essential Matrix ,退化状态下课根据匹配点来求解 Homograph Matrix。用于实时计算位姿。...
阅读(794) 评论(0)

Caffe2:ubuntuKylin17.04使用Caffe2.LSTM

ubuntuKylin17.04使用Caffe2 安装测试成功。 一早发现caffe2的较成熟的release版发布,那么深度学习平台在之后一段时间也是会出现其与tensorflow相互竞争的局面。 从打开这个caffe2的官网就会发现,有了Facebook的支持,连界面也好看多了。不过再仔细看看,觉得又和tensorflow有一丝像,从内到外。 类似于TensorFlow的构建,Caffe2默认包含了LSTM单元,即可以基于Caffe构建LSTM网络。...
阅读(1036) 评论(0)
    个人资料
    • 访问:901470次
    • 积分:12349
    • 等级:
    • 排名:第1293名
    • 原创:290篇
    • 转载:288篇
    • 译文:29篇
    • 评论:184条