关闭

安卓手机使用前置摄像头

原文链接: 安卓调用前后摄像机以及代码实现 主要代码在这里: 使用null表示后置摄像机,camera2表示前置摄像机........
阅读(101) 评论(0)

AI:IPPR的数学表示-CNN结构进化(AlexNet、InceptionNet、ResNet、InceptionResNet)

CNN通过训练卷积层,训练得到滤波器-卷积核,本质上是对于某种特定的模式有响应,响应最强的特征图,就是对应的分类。 模式识别要求参数更多更准确,因此CNN更大更长,结构也优化为更稀疏。 通过反复堆叠卷积层和MaxPooling层,堆叠出高精度的VGG-Net。而GoogleInceptionNet则直接构建稀疏结构,实现神经元网络,增强稀疏性。基于同等映射不减低精度思想,高速-直连网络,残差网络以概率投票方式实现另一种稀疏效果,得到更高精度。DenseNet更是扩展了直连思想。...
阅读(310) 评论(0)

AI:IPPR的数学表示-CNN可视化语义分析

ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的实际意义,甚至不能以解析函数的形式表示。而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义。可以跳过函数形式直接进行语义级别的解析。 可视化是直观理解的一个重要方式,CNN可视化可以辅助对特定数据集的特定网络进行语义级别的解析。...
阅读(94) 评论(0)

AI:IPPR的模式生成-学习/训练方式(基本结构)

模式识别的专家系统         模式识别的传统意义的专家系统,是由人类专家构建知识,使用谓词逻辑,构建的超大型知识图谱,并由已知图谱推到待遍历路径和节点。专家问题的既然是人类专家获取的知识,必然有力粒度分范围的限制,在某些情况下,推演可能会导致矛盾:不同的路径会产生矛盾-相反的结果。或者粒度较大时,问题空间不能被遍历,导致无法解析。...
阅读(281) 评论(0)

三维重建面试13X:一些算法试题-今日头条AI-Lab

被人牵着鼻子走,到了地方还墨明棋妙地吃一顿砖头。今日头条AI-Lab,其实我一直发现,最擅长的还是点云图像处理,且只是点云处理。 New 与Malloc的区别;unique_ptr和shared_ptr的区别。...
阅读(721) 评论(1)

AI:IPPR的数学表示-CNN结构分析(基本结构)

深度学习以“数据驱动”范式颠覆了“人造特征”范式,完成“特征学习”,这是一个重大的进步。但与此同时,它自己又陷入了一个“人造结构”窠臼中。06年hinton教授发表在nature上的最初的论文,多层压缩映射。给出的深度学习的方案是无监督学习获取网络结构,之后再通过有监督学习优化参数,DNN网络的引爆点恰恰是结构学习。大量利用未标记数据学习网络结构是深度学习最初的构想。   但无论Hinton教授组最初设计的AlexNet,还是后来的VGG,GoogLeNet,ResNet等等,都是富有经验的专家人工设计出来...
阅读(190) 评论(0)

AI:IPPR的数学表示-CNN参数分析

那么放开形式的限制,使用不受限制的网络来代替特定形式的网络。比如使用不受SIFT函数形式限制的局部链接层取代上图中的SIFT特征提取层,使用数据驱动来完成类似的功能,得到参数化的网络。 愈来愈多的类别和要求更高的精度要求网络越来越大,越变越胖,而随着参数暴涨,网络训练更加困难,分治法又有了用武之地。为使参数变少,使训练变得相应简单,网络逐渐变深,变得更长。...
阅读(248) 评论(0)

AI:IPPR的数学表示-CNN方法

既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程。越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法——CNN方法。IPPR又从分治法回到一站式方法。...
阅读(234) 评论(0)

AI:PR的数学表示-传统方法PR

在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。 对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。...
阅读(249) 评论(0)

AI:模式识别的数学表示(集合—函数观点)

模式函数是一个从问题定义域到模式值域的一个单射。 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4,其模式函数为 f( x ) = { X——>Y }|{ X = ImageNet的图片,Y={ 1860个类的标记 } } 是一个单射函数。...
阅读(171) 评论(0)

三维重建面试12:室内三维物体的位姿识别论文列表

四年前的论文列表拿出来,用来怀念一下。 在三维目标位姿识别的通路搭建过程中,使用到了下面列举的论文,其他使用到的方法相关性不是特别强,因此暂时没有列举出来。其中,有些论文没卵用,只是用来灌水的,看一下即可,不用深究。...
阅读(408) 评论(0)

三维重建面试11:点云的全局特征总结

点云的检测和分类一般使用全局特征,传统的检测方法严重依赖于点云的场景分割,所幸的是点云的分割一般情况下比二维灰度图像和彩色图像更容易进行。基于分割方法的好处是,一旦目标被正确分割,点云分类即可以转换为较为简单的有遮挡或无遮挡的点云(位姿)识别。此时的分类,即点云识别可以使用Alignment的方法,也可以使用位姿识别方法。...
阅读(461) 评论(0)

三维重建面试10:点云配准和点云匹配

点云的匹配一般使用ICP方法( ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合。 若找稠密/稀疏点的匹配关系,ICP算法即简化成一个最小二乘问题,可以通过解方程的方法得到解析解,使用优化方式求解则可以得到全局最优解。若没有匹配关系,纯粹的迭代最近点方法也能得到一个极值结果,但不一定是最优的。...
阅读(378) 评论(0)

三维重建面试9:点云图像的滤波方法小结

PCL常规滤波手段均进行了很好的封装。对点云的滤波通过调用各个滤波器对象来完成。主要的滤波器有直通滤波器,体素格滤波器,统计滤波器,半径滤波器 等。不同特性的滤波器构成了较为完整的点云前处理族,并组合使用完成任务。实际上,滤波手段的选择和采集方式是密不可分的。...
阅读(262) 评论(0)

三维重建面试8:点云图像的滤波方法

点云数据是三维空间的离散数据,不是类似于PLY格式的点线概念,因此可以使用所谓的“滤波方法”。点云数据若非看成深度map数据,则不再适用于使用二维图形的核卷积方法。此外,滤波方法与点云存储格式密切相关,点云存储格式一般为八叉树,而2.5D图像存储格式可以用深度Map形式,对应了不同的滤波方式。 实际意义上的点云滤波,是以三维点集的思维方面寻找方法,因此点云滤波依赖于几何信息,而不是数值关系。在滤波思想上,本质上三维点云X、Y、Z的思想方法权重应该是一致的。...
阅读(338) 评论(0)
    个人资料
    • 访问:828359次
    • 积分:11561
    • 等级:
    • 排名:第1411名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条