关闭

CNN结构:用于检测的CNN结构进化-结合式方法

类别失衡是影响 one-stage 检测器准确度的主要原因。那么,如果能将“类别失衡”这个因素解决掉,one-stage 不就能达到比较高的识别精度了吗? 何凯明团队采用 Focal Loss 函数 来消除这个主要障碍。 该团队设计并训练了一个简单的密集目标检测器—RetinaNet,是由一个骨干网络和两个特定任务子网组成的单一网络,骨干网络负责在整个输入图像上计算卷积特征图,并且是一个现成的卷积网络。 第一个子网在骨干网络的输出上执行卷积对象分类;第二个子网执行卷积边界框回归。...
阅读(239) 评论(0)

Caffe2:使用Caffe构建LSTM网络

一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络。...
阅读(224) 评论(0)

ES:AI 注释

为AI做注解:         AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书。         在一个算法工程师 和一个硬件工程师之间,把 不鲁棒 与不稳定 两个 形容词 联系起来,这就是转换思维的必要性。科普的本质是 用一种语法 来解释另一种语法,并保持语义不变。...
阅读(171) 评论(0)

OpenCV: Kmeans的使用一维和二维点集

OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果。...
阅读(124) 评论(0)

ES : 软件工程学的复杂度理论及物理学解释

对于孤立体系而言,在其中发生的任何反应变化必然是自发的。热力学第二定律告诉我们:在孤立体系中发生的任何变化或化学反应,总是向着熵值增大的方向进行,即向着△S孤立0的方向进行的。而当达到平衡时△S孤立=0,此时熵值达到最大。...
阅读(113) 评论(0)

三维重建面试13:点云的局部特征总结

三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。            注意事项:若使用有序点云方法,希望注意点云的连贯性,在断开的地方可以使用特殊的特征计算方法,避开深度断开位置...
阅读(188) 评论(0)

CNN结构:用于检测的CNN结构进化-一站式方法

人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型。 YOLO的特别之处,在于把检测问题表示为一个分类问题,而不是以往的寻找绑定框/包围盒+分类的问题。使用一个网络实现检测的功能,成为一个端到端的图像检测系统。...
阅读(329) 评论(2)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(143) 评论(0)

三维重建面试15:动态相机参数标定

对单个相机进行标定,一般使用标定法:相机标定-解决多点透视问题 。对空间中多点进行采样,得到相机的外参矩阵。如果想得到更准确的相机外参,建议在空间的不同位置,进行多次空间采样,进行分批次的相机标定,得到视野各处的相机外参。...
阅读(206) 评论(0)
    个人资料
    • 访问:833309次
    • 积分:11607
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条