关闭

VS编译时使用/去除NuGet管理库

之前一直使用NuGet来管理一些第三方的库,但是每次check in代码时候为了保证编译通过,都需要把对应的packages check in。 同样,在相应的设置界面关闭即可。 若只是想使用本地的一些软件包,而不是网络版本,打开工程的package.config文件,删除掉特定的行即可。...
阅读(59) 评论(0)

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。...
阅读(78) 评论(0)

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影。没有人口统计信息。每个用户只给出一个ID,且不涉及其他私人信息。...
阅读(66) 评论(0)

计算一组向量相似度

以多维几何空间考虑,两组向量的相似度可以描述为在多维几何空间中的距离关系,距离越远,相似度越低。 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。...
阅读(100) 评论(0)

推荐系统中基于深度学习的混合协同过滤模型

协同过滤的一个关键点是协同,即找到用户喜好相似的K个用户,一个多维向量的K近邻查找方法。 提出了一种Additional Stacked Denoising Autoencoder(aSDAE)的深度模型用来学习User和Item的隐向量,该模型的输入为User或者Item的评分值列表,每个隐层都会接受其对应的Side information信息的输入(该模型灵感来自于NLP中的Seq-2-Seq模型,每层都会接受一个输入,我们的模型中每层接受的输入都是一样的,因此最终的输出也尽可能的与输入相等)。...
阅读(153) 评论(0)

CNN:Windows下编译使用Caffe和Caffe2

Windows下faster-rcnn的编译可以分为2个部分,caffe的编译和faster-rcnn的编译。由于原始的版本大多基于linux,感谢各位前辈的移植与分享,现在windows版本的在网上都可以找到。但对于初学者可能还是有一些坑要填。以下是我遇到的一些问题和解决方法,用以存档。...
阅读(407) 评论(1)

DNN:windows使用 YOLO V1,V2

一个yolo,然后进入yolo-windows-master\build\darknet\下面,用vs2013直接打开darknet.sln,选择,x64版本,只要配置OpenCV和pthreads就可以,...
阅读(265) 评论(0)

推荐系统的基本原理

冷启动问题:推荐系统需要数据作为支撑。但亚马逊在刚刚开始做推荐的时候,是没有大量且有效的用户行为数据的。这时候就会面临着“冷启动”的问题。没有用户行为数据,就利用商品本身的内容数据。这就是推荐系统早期的做法。...
阅读(85) 评论(0)

推荐系统入门:作为Rank系统的推荐系统(协同过滤)

推荐系统是一个Rank系统...
阅读(188) 评论(0)
    个人资料
    • 访问:827302次
    • 积分:11555
    • 等级:
    • 排名:第1403名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:181条