关闭

初中生问题:求任意凸多边形的交叉面积

多边形相交的面积,即是 所有交点和内点组成的多边形连成的面积。再把多边形拆分成三角形,根据s2 = p * (p - a) * (p - b) * (p - c);计算出累加面积。...
阅读(16) 评论(0)

java的优先队列注意事项

C++语言中,使用优先队列,直接构建一个lambda表达式,使用一个匿名函数指针。java比较函数的返回值不是bool型,只能是整型。...
阅读(42) 评论(0)

VS编译时使用/去除NuGet管理库

之前一直使用NuGet来管理一些第三方的库,但是每次check in代码时候为了保证编译通过,都需要把对应的packages check in。 同样,在相应的设置界面关闭即可。 若只是想使用本地的一些软件包,而不是网络版本,打开工程的package.config文件,删除掉特定的行即可。...
阅读(61) 评论(0)

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。...
阅读(81) 评论(0)

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影。没有人口统计信息。每个用户只给出一个ID,且不涉及其他私人信息。...
阅读(69) 评论(0)

计算一组向量相似度

以多维几何空间考虑,两组向量的相似度可以描述为在多维几何空间中的距离关系,距离越远,相似度越低。 在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。   本文的目的就是对常用的相似性度量作一个总结。...
阅读(110) 评论(0)

推荐系统中基于深度学习的混合协同过滤模型

协同过滤的一个关键点是协同,即找到用户喜好相似的K个用户,一个多维向量的K近邻查找方法。 提出了一种Additional Stacked Denoising Autoencoder(aSDAE)的深度模型用来学习User和Item的隐向量,该模型的输入为User或者Item的评分值列表,每个隐层都会接受其对应的Side information信息的输入(该模型灵感来自于NLP中的Seq-2-Seq模型,每层都会接受一个输入,我们的模型中每层接受的输入都是一样的,因此最终的输出也尽可能的与输入相等)。...
阅读(165) 评论(0)

CNN:Windows下编译使用Caffe和Caffe2

Windows下faster-rcnn的编译可以分为2个部分,caffe的编译和faster-rcnn的编译。由于原始的版本大多基于linux,感谢各位前辈的移植与分享,现在windows版本的在网上都可以找到。但对于初学者可能还是有一些坑要填。以下是我遇到的一些问题和解决方法,用以存档。...
阅读(435) 评论(1)

DNN:windows使用 YOLO V1,V2

一个yolo,然后进入yolo-windows-master\build\darknet\下面,用vs2013直接打开darknet.sln,选择,x64版本,只要配置OpenCV和pthreads就可以,...
阅读(273) 评论(0)

推荐系统的基本原理

冷启动问题:推荐系统需要数据作为支撑。但亚马逊在刚刚开始做推荐的时候,是没有大量且有效的用户行为数据的。这时候就会面临着“冷启动”的问题。没有用户行为数据,就利用商品本身的内容数据。这就是推荐系统早期的做法。...
阅读(87) 评论(0)

推荐系统入门:作为Rank系统的推荐系统(协同过滤)

推荐系统是一个Rank系统...
阅读(193) 评论(0)

CNN结构:用于检测的CNN结构进化-结合式方法

类别失衡是影响 one-stage 检测器准确度的主要原因。那么,如果能将“类别失衡”这个因素解决掉,one-stage 不就能达到比较高的识别精度了吗? 何凯明团队采用 Focal Loss 函数 来消除这个主要障碍。 该团队设计并训练了一个简单的密集目标检测器—RetinaNet,是由一个骨干网络和两个特定任务子网组成的单一网络,骨干网络负责在整个输入图像上计算卷积特征图,并且是一个现成的卷积网络。 第一个子网在骨干网络的输出上执行卷积对象分类;第二个子网执行卷积边界框回归。...
阅读(237) 评论(0)

Caffe2:使用Caffe构建LSTM网络

一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络。...
阅读(219) 评论(0)

ES:AI 注释

为AI做注解:         AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书。         在一个算法工程师 和一个硬件工程师之间,把 不鲁棒 与不稳定 两个 形容词 联系起来,这就是转换思维的必要性。科普的本质是 用一种语法 来解释另一种语法,并保持语义不变。...
阅读(169) 评论(0)

OpenCV: Kmeans的使用一维和二维点集

OpenCVKmeans算法默认使用了Kmeans++选取种子点 参考:OpenCv中Kmeans算法实现和使用 //效果:根据半径聚类,并不一定能得到好的结果。...
阅读(122) 评论(0)

ES : 软件工程学的复杂度理论及物理学解释

对于孤立体系而言,在其中发生的任何反应变化必然是自发的。热力学第二定律告诉我们:在孤立体系中发生的任何变化或化学反应,总是向着熵值增大的方向进行,即向着△S孤立0的方向进行的。而当达到平衡时△S孤立=0,此时熵值达到最大。...
阅读(113) 评论(0)

三维重建面试13:点云的局部特征总结

三维场景中物体检测也可以使用特征点方法+词包方法的通用框架。其中BOW方法是无差别的,特征点方法与二维图像不同的是点云的数据格式问题,一般表示为对点云曲面进行特征提取。可以使用基于八叉树的方法进行特征点提取,也可以使用深度Map图的方法或有序点云方法进行特征点提取。            注意事项:若使用有序点云方法,希望注意点云的连贯性,在断开的地方可以使用特殊的特征计算方法,避开深度断开位置...
阅读(184) 评论(0)

CNN结构:用于检测的CNN结构进化-一站式方法

人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型。 YOLO的特别之处,在于把检测问题表示为一个分类问题,而不是以往的寻找绑定框/包围盒+分类的问题。使用一个网络实现检测的功能,成为一个端到端的图像检测系统。...
阅读(328) 评论(2)

CNN结构:用于检测的CNN结构进化-分离式方法

基于CNN的目标检测框架主要有两种:一种是 one-stage ,例如 YOLO、SSD 等,这一类方法速度很快,但识别精度没有 two-stage 的高,其中一个很重要的原因是,利用一个分类器很难既把负样本抑制掉,又把目标分类好。 另外一种目标检测框架是 two-stage ,以 Faster RCNN 为代表,这一类方法识别准确度和定位精度都很高,但存在着计算效率低,资源占用大的问题。...
阅读(142) 评论(0)

三维重建面试15:动态相机参数标定

对单个相机进行标定,一般使用标定法:相机标定-解决多点透视问题 。对空间中多点进行采样,得到相机的外参矩阵。如果想得到更准确的相机外参,建议在空间的不同位置,进行多次空间采样,进行分批次的相机标定,得到视野各处的相机外参。...
阅读(206) 评论(0)
591条 共30页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:831980次
    • 积分:11590
    • 等级:
    • 排名:第1421名
    • 原创:281篇
    • 转载:282篇
    • 译文:28篇
    • 评论:182条