浮点数 ieee 754

原创 2015年07月10日 15:18:40

十进制小数转化为计算机存储过程

以9.625单精度(32位)为例

  1. 十进制数转二进制表示
    9.625 = 1001.101 = 1 × 2 3 + 0 × 22 + 0 × 21 + 1 × 20 + 1 × 2-1 + 0 × 2-2 + 1 × 2-3

  2. 二进制数规范化
    ieee 754规定,二进制表示必须按照格式±d.dd…d × βe , (0 ≤ d i < β)
    即1001.101 = 1.001 101 * 23

  3. 存储到计算机
    单精度总长32位
    1-23 表述尾数:因为规范化之后的二进制数小数点左侧仅仅有一个1,所以可以省略,这样就用23位表示了24位。即尾数为1.001 101 中的001 101
    24-30 表示指数:即1.001 101 * 23 中的3
    31 表示符号:1表示负数 ,0表示正数
    另外, 指数位有8位,可以表示0-255之间的值。但是指数有可能为负数(比如0.625 = 0.101(二进制) = 1.01 * 2-1)。所以,ieee 754规定指数为增加偏移码:把规格化后的指数值+127。这样指数的范围变为了-127 - 128。那么上面的指数变为130

    按照如上规则,二进制后的小数在计算机存储为:[0] [1000 0010] [0011 0100 0000 0000 0000 000]

精度丢失

  1. 可见规范化之后的二进制数尾数部分可能远远长于23位, 那么计算机存储的时候就会丢失后面的部分。典型的是0.58。
版权声明:本文为博主原创文章,未经博主允许不得转载。

解读IEEE标准754-浮点数机制

  • 2011年01月24日 14:38
  • 121KB
  • 下载

浮点数的表示及范围 IEEE754

浮点数与IEEE754 浮点数 1.   什么是浮点数 在计算机系统的发展过程中,曾经提出过多种方法表达实数。典型的比如相对于浮点数的定点数(Fixed Point Number)。在这种表达...

ieee754--浮点数标准

  • 2009年07月13日 11:59
  • 97KB
  • 下载

基于IEEE754标准的Modbus浮点数转换程序实现

最近工作上需要实现一个基于Modbus协议的浮点数转换的过程,所以写了这么一个程序,目前仅支持32位的转换, 实现程序如下所示: /**********************************...

IEEE754浮点数标准(英文版)

  • 2008年09月26日 22:57
  • 907KB
  • 下载

IEEE754二进制浮点数分析

  • 2016年12月01日 23:22
  • 135KB
  • 下载

二进制浮点数算术标准 IEEE 754

IEEE 754 维基百科,自由的百科全书 IEEE二进制浮点数算术标准(IEEE 754)是1980年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:浮点数 ieee 754
举报原因:
原因补充:

(最多只允许输入30个字)