关闭

浮点数 ieee 754

标签: ieee-754浮点数php
708人阅读 评论(0) 收藏 举报
分类:

十进制小数转化为计算机存储过程

以9.625单精度(32位)为例

  1. 十进制数转二进制表示
    9.625 = 1001.101 = 1 × 2 3 + 0 × 22 + 0 × 21 + 1 × 20 + 1 × 2-1 + 0 × 2-2 + 1 × 2-3

  2. 二进制数规范化
    ieee 754规定,二进制表示必须按照格式±d.dd…d × βe , (0 ≤ d i < β)
    即1001.101 = 1.001 101 * 23

  3. 存储到计算机
    单精度总长32位
    1-23 表述尾数:因为规范化之后的二进制数小数点左侧仅仅有一个1,所以可以省略,这样就用23位表示了24位。即尾数为1.001 101 中的001 101
    24-30 表示指数:即1.001 101 * 23 中的3
    31 表示符号:1表示负数 ,0表示正数
    另外, 指数位有8位,可以表示0-255之间的值。但是指数有可能为负数(比如0.625 = 0.101(二进制) = 1.01 * 2-1)。所以,ieee 754规定指数为增加偏移码:把规格化后的指数值+127。这样指数的范围变为了-127 - 128。那么上面的指数变为130

    按照如上规则,二进制后的小数在计算机存储为:[0] [1000 0010] [0011 0100 0000 0000 0000 000]

精度丢失

  1. 可见规范化之后的二进制数尾数部分可能远远长于23位, 那么计算机存储的时候就会丢失后面的部分。典型的是0.58。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:331106次
    • 积分:3242
    • 等级:
    • 排名:第14778名
    • 原创:53篇
    • 转载:1篇
    • 译文:2篇
    • 评论:91条
    最新评论