在C#中快速比对图片的新方法

转载 2009年09月07日 08:56:00

Microsoft Visual Studio

MSDN的一位技术人员告诉大家一个在C#中进行图像一致性比较的简易算法。一般的情况下,人们习惯的轮询图像中的每一个像素进行比对,如果出现一个像素点的不同则判断两张照片不一致。但这样做的缺点是显而易见的:大量的查询会显著拖慢系统速度,如果要比较的图像很多则可能导致系统挂掉。新的思路是把图像文件的数据流转化成一串Base64字串,然后只要比较这些字串就可以了。作者测试了256*256以下大小的一些图片,结果完全正确而且速度明显加快。来看他是如何实现的吧。

传统的像素比对方法:

   1: private bool ImageCompareArray(Bitmap firstImage, Bitmap secondImage) 
   2: {
   3:     bool flag = true;
   4:     string firstPixel;
   5:     string secondPixel;
   6:  
   7:     if (firstImage.Width == secondImage.Width 
   8:         && firstImage.Height == secondImage.Height)
   9:     {
  10:         for (int i = 0; i < firstImage.Width; i++)
  11:         {
  12:             for (int j = 0; j < firstImage.Height; j++)
  13:             {
  14:                 firstPixel = firstImage.GetPixel(i, j).ToString();
  15:                 secondPixel = secondImage.GetPixel(i, j).ToString();
  16:                 if (firstPixel != secondPixel)
  17:                 {
  18:                     flag = false;
  19:                     break;
  20:                 }
  21:             }
  22:         }
  23:  
  24:         if (flag == false)
  25:         {
  26:             return false;
  27:         }
  28:         else
  29:         {
  30:             return true;
  31:         }
  32:     }
  33:     else
  34:     {
  35:         return false;
  36:     }
  37: }

改良后的代码:

   1: public static bool ImageCompareString(Bitmap firstImage, Bitmap secondImage)
   2: {
   3:     MemoryStream ms = new MemoryStream();
   4:     firstImage.Save(ms, System.Drawing.Imaging.ImageFormat.Png);
   5:     String firstBitmap = Convert.ToBase64String(ms.ToArray());
   6:     ms.Position = 0;
   7:  
   8:     secondImage.Save(ms, System.Drawing.Imaging.ImageFormat.Png);
   9:     String secondBitmap = Convert.ToBase64String(ms.ToArray());
  10:  
  11:     if (firstBitmap.Equals(secondBitmap))
  12:     {
  13:         return true;
  14:     }
  15:     else
  16:     {
  17:         return false;
  18:     }
  19: }

作者测试了大量图片,只要改动一个像素点,新方法都可以检测出不同。不过目前为止还没有对500*600分辨率以上的图像进行测试。
下面两个图像经测试返回true(图像完全一致)(不通过判断文件名):
dom1dom1
dom2dom2
相比之下两张明显不同的图片则判断为false(图片不同)。
dom1dom1
dom3dom3
运行大量测试以后,Base64方法的平均测试速度为每对照片0.1s。但是,使用传统的数组方法快慢则随图片而有明显差别。如果是完全一致的图片需要平均每对1.8s,检测出不同则只需要平均每对0.05s。综合看来新方法在速度上具有优势。

C#多线程指纹比对

C#多线程指纹比对 由于项目的需要,要进行指纹验证,调用指纹仪厂商的api,进行指纹比对,测试发现1000枚指纹的比对快则需要200毫秒,满则需呀1秒多,对于10w级以上的指纹数据比对显然力不从心。这...
  • hi_shu
  • hi_shu
  • 2015年01月20日 16:46
  • 795

C# OpenCV学习笔记七之图片相似比较

private void Form1_Load(object sender, EventArgs e) { string result = MatchHist(...
  • marvinhong
  • marvinhong
  • 2013年01月02日 19:55
  • 7428

c#图片比对

本文图片比对采用的是byte* ptr = (byte*)(bmpData.Scan0); 获取图像数据根位置的指针,然后用bmpData.Scan0获取图像的扫描宽度,就可以进行指针操作了。代码如下...
  • shuiya3
  • shuiya3
  • 2013年09月09日 16:46
  • 649

C# 客户端 在 服务器获取数据库图片

今天在做东西的时候要求将传到服务器的图片显示在客户端的pictureBox上,于是百思不得其解,开始以为是在数据库里取图片,后来终于明白,下面写一下代码,希望能帮到有需要的朋友吧!  try   ...
  • liutian1234567890
  • liutian1234567890
  • 2015年07月22日 12:11
  • 972

几种典型算法的快速比较函数

几种典型算法的快速比较函数 声明:   //因为这里主要是比较不同算法的实现,所以这里不区分算法及其实现,都称为算法   //比较算法的函数,其中算法函数的参数为数组(array)和整数(int)  ...
  • vagrxie
  • vagrxie
  • 2008年03月26日 21:35
  • 3267

C++ 图片相似度比对(opencv库)

利用opencv 做简单的图片识别,或译图片相似度识别,过游戏验证
  • CSND_Ayo
  • CSND_Ayo
  • 2016年11月17日 13:31
  • 1011

Science上发表的简单快速的聚类方法

工作以后发现自己学习和研究的时间变得少得可怜。 前两周因为一个同事的交流,关注了一下canopy辅助Kmeans聚类确定簇数目。然后想起最近很火的一篇Science文章:Clustering ...
  • wangweiran1
  • wangweiran1
  • 2015年11月16日 00:17
  • 2579

c#加快读取图片速度

 使用C#的BitmapData  最近要转开发平台,正研究C#。C#好是好,不过处理图片时一个像素一个像素的操作像素不是一般的慢。其实Delphi也一样,但好在Delphi的Bitmap类提供了Sc...
  • sunzongteng
  • sunzongteng
  • 2009年11月24日 17:55
  • 1788

C#实现PDF文件转换为图片

需要引用两个连接库,1、Com组件Acrobat(Adobe Acrobat Professional);2、.Net组件Microdoft.VisualBasic。下面为主要代码,当电脑没有安装Ad...
  • lq547854
  • lq547854
  • 2010年11月30日 22:19
  • 867

图像相似度算法的C#实现及测评

近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现。想着很有意思便搬到C#上来了,给大家看看。 闲言碎语   才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,...
  • jiangxinyu
  • jiangxinyu
  • 2012年09月11日 17:29
  • 15095
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:在C#中快速比对图片的新方法
举报原因:
原因补充:

(最多只允许输入30个字)