一道很水的题，题目：

# Goldbach's Conjecture

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2805    Accepted Submission(s): 1040

Problem Description
Goldbach's Conjecture: For any even number n greater than or equal to 4, there exists at least one pair of prime numbers p1 and p2 such that n = p1 + p2.
This conjecture has not been proved nor refused yet. No one is sure whether this conjecture actually holds. However, one can find such a pair of prime numbers, if any, for a given even number. The problem here is to write a program that reports the number of all the pairs of prime numbers satisfying the condition in the conjecture for a given even number.

A sequence of even numbers is given as input. Corresponding to each number, the program should output the number of pairs mentioned above. Notice that we are interested in the number of essentially different pairs and therefore you should not count (p1, p2) and (p2, p1) separately as two different pairs.

Input
An integer is given in each input line. You may assume that each integer is even, and is greater than or equal to 4 and less than 2^15. The end of the input is indicated by a number 0.

Output
Each output line should contain an integer number. No other characters should appear in the output.

Sample Input
6
10
12
0

Sample Output
1
2
1

ac代码：

#include <iostream>
#include <cstdio>
#include <string.h>
#include <cmath>
using namespace std;
bool prime[40000];
void init(){
memset(prime,false,sizeof(false));
for(int i=2;i<=39999;++i){
int y=(int)sqrt(i+0.5);
bool flag=true;
for(int j=2;j<=y;++j){
if(i%j==0){
flag=false;
prime[i]=false;
break;
}
}
if(flag==true)prime[i]=true;
}
}
int main(){
int n,num;
init();
while(scanf("%d",&n),n){
num=0;
for(int i=2;i<=n/2;++i){
if(prime[i]&&prime[n-i])
num++;
}
printf("%d\n",num);
}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：杭电 1397 水题 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)