排序 堆排序 例程

原创 2012年03月23日 22:13:52
// heapSort.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include<iostream>
#include<cstdlib>
using namespace std;

void MaxHeapify(int *a,int i,int size);				//保持最大堆特性
void BuildMaxHeap(int *a,int size)	;				//建立最大堆
void HeapSort(int *a,int size);							//堆排序
 inline int Parent(int i);							//算父节点
 inline int Left(int i);								//算左子节点
 inline int Right(int i);								//算右子节点
 void Display(int *a,int size) ;

int _tmain(int argc, _TCHAR* argv[])
{
	int size,*a;
	while(1)
	{
		cout<<"输入字符串长度:"<<endl;
		cin>>size;
		if(size > 0) {
			cout<<"请输入"<<size<<"个待排序数字:"<<endl;
			a = (int*)malloc(size*sizeof(int));//a = new int [size];
			for(int i=0; i<size; i++)
			{
				cin>>a[i];
			}
			HeapSort(a,size);
		}
		else
			cout<<"输入长度错误!"<<endl;

		Display(a,size);
	}
	return 0;
}

void MaxHeapify(int *a,int i,int size)				//保持最大堆特性
{
	int l,r,heapSize,largest,temp;
	l = Left(i);
	r = Right(i);
	heapSize =size;
	if (l<heapSize && a[l]>a[i] ) {
		largest = l;
	}
	else largest = i;

	if(r<heapSize && a[r]>a[largest]) {
		largest = r;
	}

	if(largest != i) {
		temp = a[i];
		a[i] = a[largest];
		a[largest] = temp;
		MaxHeapify(a,largest,heapSize);
	}

}

void BuildMaxHeap(int *a,int size)//建立最大堆
{
	int heapSize = size;
	int lengthArray =size;
	for(int i=lengthArray-1; i>=0; i--)
	{
		MaxHeapify(a,i,heapSize);
	}
}

void HeapSort(int *a,int size)				//堆排序
{
	int temp;
	int lengthArray = size;
	int heapSize = lengthArray;
	BuildMaxHeap(a,heapSize);
	for(int i=lengthArray-1; i>=1; i--)
	{
		temp = a[0];
		a[0] = a[i];
		a[i] = temp;
		heapSize -= 1;
		MaxHeapify(a,0,heapSize);
	}
}

inline int Parent(int i)//计算父节点
{
	i ++;
	return i/2-1;
}

inline int Left(int i)//计算子左节点
{
	i++;
	return 2*i-1;
}

inline int Right(int i)//计算子右节点
{
	i++;
	return 2*i;
}

void Display(int *a,int size)//打印函数
{
		for(int i=0; i<size; i++)    //打印数组
		{
			cout<<a[i]<<" ";
		}
		cout<<endl<<endl;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

算法导论例程——堆排序(大根堆为例)

堆排序是具有原址性的排序,复杂度为o(nlgn)。 首先要建立一个“堆”的概念,堆 可以理解为二叉树的一种,是完全二叉树,即除了最后一层外节点没有缺失,所以可以用数组来表示。对于下标为i的节点,它的子...

数据结构例程——选择排序之堆排序

本文是[数据结构基础系列(9):排序]中第7课时[选择排序之堆排序]的例程。#include #define MaxSize 20 typedef int KeyType; //定义关键字类型...

堆排序(例程可用作轮子)

常常将“二叉堆”简称作“堆”,它是完全二叉树。满足以下特性的叫做堆

归并排序例程

  • 2014-04-01 23:19
  • 621B
  • 下载

算法导论例程——归并排序

归并排序,是把要排序的序列不断二分(不满足向前取整),直到分到都只有一个元素时,保证有序,然后开始合并,直接在原数组的位置进行替换,即merge函数中收元素为什么要用start去加的原因。#inclu...

堆排序之Java实现

堆排序算法c语言实现

java例程练习(引用类型数据的排序和查找)[外篇]

public class TestSort { public static void main(String[] args) { Date[] days = new Date[5]; //...

堆排序及其用途

  • 2016-03-25 13:46
  • 214KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)