回忆的微积分

原创 2006年06月25日 01:00:00

回忆是对自己岁月的一种微积分
有积分的过程,也有微分的过程

会因为一杯咖啡而想起在大学时流过的黑夜
会因为一段音乐二想起玩过的一个
会因为季节变换时的阵风而回想起童年时的时光
会因为一点星光而回想起一段心情

 

相关文章推荐

《微积分阅览室》今日正式对外开放,欢迎新同学!

今天是9月1日,新的学年就要开始了。按照原定计划,《微积分阅览室》自今日起对外开放,《阅览室》热烈欢迎新同学的访问。          经过前一阶段的努力,我们的声音逐渐在互联网上传播开来。比如,针...

计算图上的微积分:反向传播算法

引言 Backpropagation (BP) 是使得训练深度模型在计算上可行的关键算法。对现代神经网络,这个算法相较于无脑的实现可以使梯度下降的训练速度提升千万倍。而对于模型的训练来说,这其实是 ...
  • neilol
  • neilol
  • 2015年09月07日 20:46
  • 924

漫步微积分三十二——两条曲线间的面积

假设我们给出了两条曲线y=f(x),yg(x)y=f(x),yg(x),如图1所示,在x=a,bx=a,b处有交点并且在区间[a,b][a,b]内第一条曲线位于第二条的上方,为了求出曲线之间的面积,很...

用Mathematica做微积分

转自:用Mathematica做微积分 - calculus的日志 - 网易博客 http://xuxzmail.blog.163.com/blog/static/25131916201176932...
  • rookiew
  • rookiew
  • 2016年10月26日 09:20
  • 580

互联网大课堂,简易微积分

     在上世纪末,美国国内开展的微积分改革运动的目标就是强调所谓“概念理解”(”Conceptual understanding”),也就是说,强化对微积分学基本概念的理解。实际上...

微积分学的理想数:ε与H

     三百年前,莱布尼兹认为无穷小ε与与无穷大H是微积分学中的“理想数”(idealnumbers);三百年之后,A.Robinson论证了这类理想数的合法性(即逻辑推理的严密性)...

柯朗微积分与数学分析习题选解(1.1 节 e)

一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大...

读书笔记:微积分的历程-从牛顿到勒贝格

挺好的一本书,讲了微积分的历史,并且有很多干货,第一遍快速读完,第二遍读的过程顺便做些笔记 第1章 牛顿...
  • buck84
  • buck84
  • 2015年12月13日 21:28
  • 895

图说微积分(六)泰勒级数

教授一上来就说:任何有理的函数他们都能写成下面的多项式累加的形式,这样的形式表示的是函数在x=0这点的泰勒级数展开,表示的是在x=0周围,函数与这些多项式的组合的函数值很接近。也可以称作麦克劳级数 ...

漫步微积分三十四——体积计算:圆柱壳法

还有一种去体积的方法,往往它比上篇文章的方法更加方便。为了理解这种方法,考虑图1左边所示的区域,也就是,第一象限数轴和所示示曲线y=f(x)y=f(x)围成的区域。如果这个区域绕xx轴旋转,那么图中的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:回忆的微积分
举报原因:
原因补充:

(最多只允许输入30个字)