关闭

线段树 1212. [NOIP2010冲刺十二] 奶牛排队

138人阅读 评论(0) 收藏 举报
分类:

奶牛在熊大妈的带领下排成了一条直队。
显然,不同的奶牛身高不一定相同……
现在,奶牛们想知道,如果找出一些连续的奶牛,要求最左边的奶牛A是最矮的,最右边的B是最高的,且B高于A奶牛,中间如果存在奶牛,则身高不能和A、B奶牛相同。问这样的奶牛最多会有多少头?
从左到右给出奶牛的身高,请告诉它们符合条件的最多的奶牛数(答案可能是0,2,但不会是1)。
【输入格式】

第一行一个数N (2≤N≤100000),表示奶牛的头数。
接下来N个数,每行一个数,从上到下表示从左到右奶牛的身高(1≤身高= maxlongint)。
【输出格式】

一行,表示最多奶牛数。
【样例输入】

5
1
2
3
4
1

这是题目:这道题可以用线段树,也可以直接暴力搜索

//这道题用线段树做感觉挺麻烦的,
#include <iostream>
#include <cstdio>

using namespace std;

const int maxn=100010;

int Read()
{
    char ch;
    int x;
    while(ch=getchar(),(ch<'0'||ch>'9'));
    x = ch-'0';
    while(ch=getchar(),(ch>='0' && ch <= '9'))
        x = x*10+ch-'0';
    return x;
}
int ans=0,h[maxn];

struct Node
{
    int L,R;
    int Max,Min;
};

Node Tree[maxn*2];

//建树的同时,插入Max,MIn,但是要确定最值得左边右边
void Build(int root,int l,int r)
{
    Tree[root].L = l,Tree[root].R =r;
    if(l==r)
    {
        Tree[root].Max=Tree[root].Min=l;
        return;
    }
    int mid = (l+r)>>1;
    Build(root<<1,l,mid);
    Build(root<<1|1,mid+1,r);
    if(h[Tree[root<<1].Max]>h[Tree[root<<1|1].Max])
        Tree[root].Max = Tree[root<<1].Max;
    else
        Tree[root].Max = Tree[root<<1|1].Max;
    if(h[Tree[root<<1].Min] < h[Tree[root<<1|1].Min])
        Tree[root].Min = Tree[root<<1].Min;
    else
        Tree[root].Min = Tree[root<<1|1].Min;
}

int Rmax(int a,int b)
{
    if(a>b) return a;
    return b;
}

int Rmin(int a,int b)
{
    if(a<b) return a;
    return b;
}

int get_max(int rt,int s,int t)
{
    if(s<=Tree[rt].L && t>=Tree[rt].R)
    {
        return Tree[rt].Max;
    }
    int mid = (Tree[rt].L+Tree[rt].R)/2;
    if(s>mid)
        return get_max(rt<<1|1,s,t);
    else if(t <= mid)
        return get_max(rt<<1,s,t);
    else
    {
        int a = get_max(rt<<1,s,mid);
        int b = get_max(rt<<1|1,mid+1,t);
        if(h[a]>h[b])
            return a;
        else
            return b;
    }
}

int get_min(int rt,int s,int t)
{
    if(s<=Tree[rt].L && t>=Tree[rt].R)
        return Tree[rt].Min;
    int mid = (Tree[rt].L+Tree[rt].R)/2;
    if(s>mid)
        return get_min(rt<<1|1,s,t);
    else if(t <= mid)
        return get_min(rt<<1,s,t);
    else
    {
        int a=get_min(rt<<1,s,mid);
        int b=get_min(rt<<1|1,mid+1,t);
        if(h[a]<h[b])
            return a;
        return b;
    }
}

//深度搜索
void dfs(int l,int r)
{
    if(l>=r || r-l+1<=ans)
        return;
    if(r-l == 1)
    {
        if(h[r]>h[l])
        {
            ans = Rmax(ans,2);
            return;
        }
    }
    int posmax=get_max(1,l,r);
    int posmin=get_min(1,l,r);
    if(h[posmax] == h[posmin])
        return;
    if(posmin<posmax)//要求posmin<posmax
        ans = Rmax(ans,posmax-posmin+1);
    dfs(l,posmin-1);
    dfs(posmin+1,posmax-1);
    dfs(posmax+1,r);
    //还不是很清楚这三个dfs是怎么回事
}

int main()
{
    freopen("tahort.in","r",stdin);
    freopen("tahort.out","w",stdout);
   int n=Read();
    bool flag=0;
    h[0] = 0x7f7f7f7f;
    for(int i=1;i<=n;i++)
    {
        h[i] = Read();
        if(h[i]>h[i-1])
            flag = 1;
    }
    if(!flag)
    {
        printf("0\n");
        return 0;
    }
    Build(1,1,n);
    dfs(1,n);
    printf("%d\n",ans);
    return 0;
}

暴力搜索,直接贴别人的代码了

#include<cstdio>  
#include<cstring>  
#include<algorithm>  
using namespace std;  
int n;  
int a[100010];  
int ans;//记录答案   
bool flag;  
void work()  
{  
    for(int i=n;i>1;i--)  
    {  
        for(int j=i-1;j>=1;j--)  
        {  
            if(a[i]<=a[j]) break;//应当满足右边的点大于左边的点   
            flag=true;  
            for(int k=j+1;k<i;k++)  
            {  
                if(a[k]<=a[j]||a[k]>=a[i])//如果点k比左边的点小或比右边的大,表示i,j不为最大或最小   
                {  
                    flag=false;  
                    break;  
                }  
            }  
            if(flag)  
            {  
                ans=max(ans,i-j+1);  
                if(ans==n)//如果长度最长就为n则直接输出   
                {  
                    printf("%d",ans);   
                    return;//这里非常需要注意!!不能写成break,我最开始用break结果WA了3个点,因为如果不直接return,最后得出来的结果会输出两次   
                }  
            }  
        }  
    }   
    printf("%d",ans);  
}  
int main()  
{  
    freopen("tahort.in","r",stdin);  
    freopen("tahort.out","w",stdout);  
    scanf("%d",&n);  
    for(int i=1;i<=n;i++)  
    {  
        scanf("%d",&a[i]);  
    }  
    work();  
    return 0;  
}  
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8950次
    • 积分:622
    • 等级:
    • 排名:千里之外
    • 原创:53篇
    • 转载:18篇
    • 译文:0篇
    • 评论:0条