看 迪杰斯特拉(Dijsktra)算法体会

迪杰斯特拉 看啊哈算法中迪杰斯特拉算法体会;

    算法思路 ;

1.先找到源头到其他点的最短路;

2.以最短路作为中转点进行比较,用一个dis数组保存源头到他的最优距离

3.用循环进行最优筛选;


#include<stdio.h>
int e[1005][1005],dis[1005],book[1005],i,j,n,m,t1,t2,t3,u,v,min;
int main()
{
    int inf=9999999;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        if(m==n&&n==0) return 0;
        for(i=1; i<=n; i++)
        {
            for(j=1; j<=n; j++)
            {
                if(i==j) e[i][j]=0;
                else e[i][j]=inf;

            }
        }
        for(i=1; i<=m; i++)
        {
            scanf("%d%d%d",&t1,&t2,&t3);
            e[t1][t2]=e[t2][t1]=t3;
        }
        for(i=1; i<=n; i++)
        {
            dis[i]=e[1][i];
        }
        for(i=0; i<=n; i++)
        {
            book[i]=0;
        }
        book[1]=1;

        for(i=1; i<n; i++)
        {
            min=inf;
            for(j=1; j<=n; j++)
            {
                if(book[j]==0&&dis[j]<min)
                {
                    min=dis[j];
                    u=j;

                }
            }
            book[u]=1;
            for(v=1; v<=n; v++)
            {
                if(e[u][v]<inf)
                    if(dis[v]>dis[u]+e[u][v])
                        dis[v]=dis[u]+e[u][v];
            }

        }
        // for(i=1; i<=n; i++)
        printf("%d\n",dis[n]);
    }
    return 0;
}


迪杰斯特拉(Dijkstra)算法是一种用于寻找有向图或无向图中最短路径的经典算法,通常用于解决单源点到其他所有节点的问题。在C语言中实现Dijkstra算法,你需要以下几个步骤: 1. **初始化**:创建一个优先队列,并将起点的距离设为0,其它所有节点的距离设为无穷大。将起点加入队列。 2. **迭代**:每次从队列中取出当前距离最小的节点。对于该节点的每一个邻居,如果通过该邻居到达的距离比当前邻居的距离小,则更新邻居的距离并将其加入队列。 3. **结束条件**:当队列为空或者队首节点是目标节点时,停止迭代。 4. **路径记录**:在整个过程中,需要存储每个节点的前驱节点,以便重构最短路径。 5. **路径重建**:从目标节点开始,通过前驱节点数组回溯找到整个最短路径。 以下是简单的伪代码示例: ```c #include <stdio.h> #include <stdlib.h> // 使用优先队列库 // 定义结构体表示图的节点及其邻接权重 typedef struct { int node; int distance; } Node; // Dijkstra函数实现 void dijkstra(int graph[][graph_size], int src, int dest, int graph_size, Node *nodes, int *prev_nodes) { // ... (以上步骤的具体实现) // ... (路径重建部分) printf("Shortest path from %d to %d is: ", src, dest); while (dest != src) { printf("%d -> ", nodes[dest].node); dest = prev_nodes[dest]; } printf("%d\n", src); } int main() { // 图结构、源点和目标点等数据准备 // ... (此处应包含实际的数据处理) dijkstra(graph, src, dest, graph_size, nodes, prev_nodes); return 0; } ``` 注意:由于这里无法提供完整的C语言代码,上述代码只是一个简化版本的框架。在实际应用中,你需要处理优先队列的实现(例如使用二叉堆),以及正确地存储和更新节点信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值