关闭

滤波器模型的建立

标签: 算法zk
1152人阅读 评论(0) 收藏 举报
 滤波器模型的建立
卡尔曼滤波器包括两个主要过程:预估与校正。预估过程
主要是利用时间更新方程建立对当前状态的先验估计,及时向
前推算当前状态变量和误差协方差估计的值,以便为下一个时
间状态构造先验估计值;校正过程负责反馈,利用测量更新方
程在预估过程的先验估计值及当前测量变量的基础上建立起
对当前状态的改进的后验估计。这样的一个过程,我们称之为
预估-校正过程,对应的这种估计算法称为预估-校正算法。以
下给出离散卡尔曼滤波的时间更新方程和状态更新方程。
时间更新方程:
X赞
k
-=AX赞 k-1+BU赞 k-1 (11)
Pk
-=APk-1AT+Q (12)
状态更新方程:
Kk=Pk
-HT(HPk
-HT+R)-2 (13)
X赞
k=X赞 k
-+Kk(Zk-HX赞 k
-) (14)
Pk=(I-KkH)Pk
- (15)
在上面式中,各量说明如下:
A:作用在Xk-1
上的n×n 状态变换矩阵
B:作用在控制向量Uk-1
上的n×1 输入控制矩阵
H:m×n 观测模型矩阵, 它把真实状态空间映射成观测空
间Pk
-:为n×n 先验估计误差协方差矩阵Pk:为n×n 后验估计误
差协方差矩阵Q:n×n 过程噪声协方差矩阵R:m×m 过程噪声
协方差矩阵I:n×n 阶单位矩阵Kk:n×m 阶矩阵, 称为卡尔曼增
益或混合因数,作用是使后验估计误差协方差最小前面描述的
卡尔曼滤波器估计一个用线性随机差分方程描述的随机过程
的状态变量Xk∈Rn
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:498549次
    • 积分:2104
    • 等级:
    • 排名:第18086名
    • 原创:28篇
    • 转载:25篇
    • 译文:0篇
    • 评论:21条
    最新评论