关闭

spark 基本方法

标签: spark数据
858人阅读 评论(0) 收藏 举报
分类:

转换(Transformations)

Transformation

Meaning

map( func)

返回一个新的分布式数据集,由每个原元素经过func函数转换后组成

filter( func)

返回一个新的数据集,由经过func函数后返回值为true的原元素组成

flatMap( func)

类似于map,但是每一个输入元素,会被映射为0到多个输出元素(因此,func函数的返回值是一个Seq,而不是单一元素)

sample( withReplacementfracseed)

根据给定的随机种子seed,随机抽样出数量为frac的数据

union(otherDataset)

返回一个新的数据集,由原数据集和参数联合而成

groupByKey([numTasks])

在一个由(K,V)对组成的数据集上调用,返回一个(K,Seq[V])对的数据集。注意:默认情况下,使用8个并行任务进行分组,你可以传入numTask可选参数,根据数据量设置不同数目的Task

(groupByKey和filter结合,可以实现类似Hadoop中的Reduce功能)

reduceByKey(func, [numTasks])

在一个(K,V)对的数据集上使用,返回一个(K,V)对的数据集,key相同的值,都被使用指定的reduce函数聚合到一起。和groupbykey类似,任务的个数是可以通过第二个可选参数来配置的。

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)类型的数据集上调用,返回一个(K,(V,W))对,每个key中的所有元素都在一起的数据集

groupWith(otherDataset, [numTasks])

在类型为(K,V)和(K,W)类型的数据集上调用,返回一个数据集,组成元素为(K, Seq[V], Seq[W]) Tuples。这个操作在其它框架,称为CoGroup

cartesian(otherDataset)

笛卡尔积。但在数据集T和U上调用时,返回一个(T,U)对的数据集,所有元素交互进行笛卡尔积。

sortByKey([ascendingOrder])

在类型为( K, V )的数据集上调用,返回以K为键进行排序的(K,V)对数据集。升序或者降序由boolean型的ascendingOrder参数决定

(类似于Hadoop的Map-Reduce中间阶段的Sort,按Key进行排序)

Actions(动作)

Action

Meaning

reduce( func)

通过函数func聚集数据集中的所有元素。Func函数接受2个参数,返回一个值。这个函数必须是关联性的,确保可以被正确的并发执行

collect()

在Driver的程序中,以数组的形式,返回数据集的所有元素。这通常会在使用filter或者其它操作后,返回一个足够小的数据子集再使用,直接将整个RDD集Collect返回,很可能会让Driver程序OOM

count()

返回数据集的元素个数

take( n)

返回一个数组,由数据集的前n个元素组成。注意,这个操作目前并非在多个节点上,并行执行,而是Driver程序所在机器,单机计算所有的元素

(Gateway的内存压力会增大,需要谨慎使用)

first()

返回数据集的第一个元素(类似于take(1))

saveAsTextFile(path)

将数据集的元素,以textfile的形式,保存到本地文件系统,hdfs或者任何其它hadoop支持的文件系统。Spark将会调用每个元素的toString方法,并将它转换为文件中的一行文本

saveAsSequenceFile(path)

将数据集的元素,以sequencefile的格式,保存到指定的目录下,本地系统,hdfs或者任何其它hadoop支持的文件系统。RDD的元素必须由key-value对组成,并都实现了Hadoop的Writable接口,或隐式可以转换为Writable(Spark包括了基本类型的转换,例如Int,Double,String等等)

foreach( func)

在数据集的每一个元素上,运行函数func。这通常用于更新一个累加器变量,或者和外部存储系统做交互

缓存

调用RDD的cache()方法,可以让它在第一次计算后,将结果保持存储在内存。数据集的不同部分,将会被存储在计算它的不同的集群节点上,让后续的数据集使用更快。缓存是有容错功能的,如果任一分区的RDD数据丢失了,它会被使用原来创建它的转换,再计算一次(不需要全部重新计算,只计算丢失的分区)

Shared Variables

共享变量

一般来说,当一个函数被传递给Spark操作(例如map和reduce),通常是在集群结点上运行,在函数中使用到的所有变量,都做分别拷贝,供函数操作,而不会互相影响。这些变量会被拷贝到每一台机器,而在远程机器上,在对变量的所有更新,都不会被传播回Driver程序。然而,Spark提供两种有限的共享变量,供两种公用的使用模式:广播变量和累加器

广播变量

广播变量允许程序员保留一个只读的变量,缓存在每一台机器上,而非每个任务保存一份拷贝。他们可以使用,例如,给每个结点一个大的输入数据集,以一种高效的方式。Spark也会尝试,使用一种高效的广播算法,来减少沟通的损耗。

广播变量是从变量V创建的,通过调用SparkContext.broadcast(v)方法。这个广播变量是一个v的分装器,它的只可以通过调用value方法获得。如下的解释器模块展示了如何应用:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))

broadcastVar: spark.Broadcast[Array[Int]] = spark.Broadcast(b5c40191-a864-4c7d-b9bf-d87e1a4e787c)

scala> broadcastVar.value

res0: Array[Int] = Array(1, 2, 3)

在广播变量被创建后,它能在集群运行的任何函数上,被取代v值进行调用,从而v值不需要被再次传递到这些结点上。另外,对象v不能在被广播后修改,是只读的,从而保证所有结点的变量,收到的都是一模一样的。

累加器

累加器是只能通过组合操作“加”起来的变量,可以高效的被并行支持。他们可以用来实现计数器(如同MapReduce中)和求和。Spark原生就支持Int和Double类型的计数器,程序员可以添加新的类型。

一个计数器,可以通过调用SparkContext.accumulator(V)方法来创建。运行在集群上的任务,可以使用+=来加值。然而,它们不能读取计数器的值。当Driver程序需要读取值的时候,它可以使用.value方法。

如下的解释器,展示了如何利用累加器,将一个数组里面的所有元素相加

scala> val accum = sc.accumulator(0)

accum: spark.Accumulator[Int] = 0

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value

res2: Int = 10

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2441次
    • 积分:91
    • 等级:
    • 排名:千里之外
    • 原创:6篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条
    文章分类