最优流水作业调度

本文讨论了最优流水作业调度问题,特别是在两台机器上的调度情况。通过分析问题的最优子结构和高度重复性,提出了使用动态规划求解的方法。介绍了算法的基本思想,并给出了C语言的实现代码。
摘要由CSDN通过智能技术生成

最优流水调度问题

问题描述:

       设有n个作业,每一个作业i均被分解为m项任务: Ti1, Ti2, ┅ , Tim(1≤i≤n,故共有n*m个任务),要把这些任务安排到m台机器上进行加工。

       现在有三条限定:

       1、  每个作业i的第j项任务Tij (1≤i≤n, 1≤j≤m)只能安排在机器Pj上进行加工;

       2、  作业i的第j项任务Tij(1≤i≤n, 2≤j≤m)的开始加工时间均安排在第j-1项任务Ti,j-1加工完毕之后;

       3、  任何一台机器在任何一个时刻最多只能承担一项任务。

       最优流水作业调度:设任务Tij在机器Pj上进行加工需要的时间为tij。如果所有的tij(1≤i≤n, 1≤j≤m)均已给出,要找出一种安排任务的方法,使得完成这n个作业的加工时间为最少。已经证明,当机器数(或称工序数)m≥3时,流水作业调度问题是一个NP-hard问题。

       这里就考虑n个作业对于2个机器(P1,P2)的调度。现在问题就是:给定n个作业T,每个作业可以分成两项任务A,B;其中A任务在P1处理,B任务在P2上处理。如何给出一个使得这个n个作业的加工时间最短?

问题解决:

分析:

       首先考虑最优流水调度的性质:

       1、 在所确定的最优调度的排列中去掉第一个执行作业后,剩下的作业排列仍然还是一个最优调度,即该问题具有最优子结构的性质。

       2、 在计算规模为n的作业集合的最优调度时,需多次使用该作业集合的子集合的最优调度,即该问题亦具有高度重复性

       So… 考虑用动态规划求解这个问题咯~

 

       设N={1,2,┅,n}是全部作业的集合,作业集S是N的子集S∈N。在我们对S中的第一个作业开始进行加工时,机器P2上加工的其它作业可能还尚未完成,不能立即用来对S中的作业进行加工

       假设对机器P2需等待t个时间单位以后才可以用于S中的作业加工(t也可以为0即无须等待),记为g(S,t)。

       现选定作业i为S中第一个加工作业之后,在机器P2上开始对S-{i}中的作业进行加工之前,所需要的等待时间为bi+max{t-ai,0}。这是因为,若P2在开始加工S中的作业之前需等待t个时间单位且t > ai,则作业i在P1上加工完毕(需时ai)之后,还要再等t-ai个时间单位才能开始在P2上加工;若t≤ai,则作业i在P1上加工完毕之后,立即可以在P2上加工,等待时间为0。故P2在开始对S-{i}中的作业进行加工之前,所需要的等待时间为t’= bi&#

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值