【二分】【自适应Simpson】Bridge

原创 2013年12月03日 12:01:25

A suspension bridge suspends the roadway from huge main cables, which extend from one end of the bridge to the other. These cables rest on top of high towers and are secured at each end by anchorages. The towers enable the main cables to be draped over long distances.

Suppose that the maximum distance between two neighboring towers is D, and that the distance from the top of a tower to the roadway is H. Also suppose that the shape of a cable between any two neighboring towers is the same symmetric parabola (as shown in the figure). Now given B, the length of the bridge and L, the total length of the cables, you are asked to calculate the distance between the roadway and the lowest point of the cable, with minimum number of towers built (Assume that there are always two towers built at the two ends of a bridge).

\epsfbox{p3485.eps}

Input 

Standard input will contain multiple test cases. The first line of the input is a single integer T (1$ \le$T$ \le$10) which is the number of test cases. T test cases follow, each preceded by a single blank line.

For each test case, 4 positive integers are given on a single line.

D
- the maximum distance between two neighboring towers;
H
- the distance from the top of a tower to the roadway;
B
- the length of the bridge; and
L
- the total length of the cables.

It is guaranteed that B$ \le$L. The cable will always be above the roadway.

Output 

Results should be directed to standard output. Start each case with "Case #:" on a single line, where # is the case number starting from 1. Two consecutive cases should be separated by a single blank line. No blank line should be produced after the last test case.

For each test case, print the distance between the roadway and the lowest point of the cable, as is described in the problem. The value must be accurate up to two decimal places.

Sample Input 

2

20 101 400 4042

1 2 3 4

Sample Output 

Case 1:
1.00

Case 2:
1.60


写出抛物线方程,注意到弧长关于h单调递增,因此可以二分。列出弧长的计算公式,积分用自适应Simpson计算。

当每个抛物线的宽度最大时, 支柱个数最少。

注意比较的时候和L/n比较,因为L是总长度,而L/n才是抛物线的弧长。

二分出h,然后比较计算出来的弧长和要求的弧长,调整区间。


我把二分区间最小值设为10^-3,其实不太好,因为近似算法本身存在一定误差,而且近似出的结果和宽度的比较也有一定误差,所以最好把区间最小值设得更小一些。

小心最后不能多输回车。

#include <cstdio>
#include <cmath>

double a;
double h;
double D1,L1;

double f(double x)
{
	return sqrt(1.0+4.0*a*a*x*x);
}

double simpson(double a,double b)
{
	double c = a+(b-a)/2;
	return (f(a)+4*f(c)+f(b))*(b-a)/6;
}

double asr(double a,double b,double eps,double A)
{
	double c = a+(b-a)/2;
	double L = simpson(a,c) , R = simpson(c,b);
	if (fabs(L+R-A) <= 15*eps) return L+R+(L+R-A)/15.0;
	return asr(a,c,eps/2,L) + asr(c,b,eps/2,R);
}

double asr(double a,double b,double eps)
{
	return asr(a,b,eps,simpson(a,b));
}

double F(double w,double h)
{
	a = 4.0*h/(w*w);
	return 2*asr(0,w/2,1e-8);
}

double eps = 1e-8;

int main()
{
	freopen("3485.in","r",stdin);
	freopen("3485.out","w",stdout);

	int T;
	scanf("%d",&T);
	int D,H,B,L;
	int cases = 0;

	while (scanf("%d%d%d%d",&D,&H,&B,&L)!=EOF)
	{
		cases ++;
		double l = 0; double r = H;
		int n = (B+D-1)/D;
		D1 = double(B)/n;
		L1 = double(L)/n;
		while (r-l>1e-3)
		{
			h = (r+l)/2.0;
			double rs = F(D1,h);

			//printf("Debug F(%lf,%lf) = %lf\n",w,h,rs);
			if (rs < L1-eps)
				l = h;
			else
				r = h;
		}

		if (cases > 1) printf("\n");
		printf("Case %d:\n%.2lf\n",cases,H-h);
	}
	return 0;
}


zoj2614 Bridge(自适应Simpson公式+二分答案)

【题解】 首先求出分出的最少区间数:n=ceil(B/D),ceil():向上取整 然后依据每一段的宽度w=B/n及弧长L/=n来求"深度"h即可,答案为:y=H-h w,h可确定一条抛物线,其弧长L...
  • cjk_cjk
  • cjk_cjk
  • 2015年03月01日 02:06
  • 492

UVALive-3485 Bridge(二分答案+自适应辛普森积分)

前言本题是我在《训练指南》上发现的一道有趣的题目,有两种做法,一种是直接运用数学方法求积分,对这题而言较为繁琐;另一种则是运用自适应辛普森积分算法,简洁地求解此题。《训练指南》一书中还有很多比较好的题...
  • Ab_Ever
  • Ab_Ever
  • 2017年08月03日 09:02
  • 187

BZOJ 1502 [NOI2005]月下柠檬树 自适应Simpson积分

BZOJ 1502 [NOI2005]月下柠檬树 自适应Simpson积分
  • wzq_QwQ
  • wzq_QwQ
  • 2015年09月09日 07:54
  • 1517

HDU 1724 Ellipse 自适应simpson函数模板题(二)

Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

HDU 1724 Ellipse 【自适应Simpson积分】

Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To...

HDOJ-4498 Function Curve(自适应Simpson积分)

主要考点是数学计算和自适应Simpson积分 题意: 给你n系数,函数值,求在x=[0,100]这段区间内曲线的长度。 需要准备一些数学知识,高数/数分/工科数分/微积分 中曾经学过,曲线的...

hdu 1724 自适应 simpson 算法 求积分

题意: 给出椭圆, l  和 r  求 在这之间的椭圆的面积。 #include #include #include #include #include #include #...

BZOJ2178 圆的面积并 自适应Simpson积分

大家都很强,可与之共勉。题意:   给您nn个圆,让您求出它们的面积并。   其中0...

【HDU4498】Function Curve-分段+自适应Simpson积分法

【HDU4498】Function Curve-分段+自适应Simpson积分法

【计算几何】【simpson自适应公式】【NOI2004】降雨量

【问题描述】 M国是个多雨的国家,尤其是P城,频繁的降雨给人们的出行带来了不少麻烦。为了方便行人雨天过马路,有关部门在每处人行横道的上空都安装了一种名为“自动伞”的装置。(如图1所示) 每把自动伞都...
  • Whjpji
  • Whjpji
  • 2012年06月11日 15:37
  • 2283
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【二分】【自适应Simpson】Bridge
举报原因:
原因补充:

(最多只允许输入30个字)