【后缀数组】Str2int

原创 2013年12月04日 10:35:46

str2int

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1089    Accepted Submission(s): 360


Problem Description
In this problem, you are given several strings that contain only digits from '0' to '9', inclusive.
An example is shown below.
101
123
The set S of strings is consists of the N strings given in the input file, and all the possible substrings of each one of them.
It's boring to manipulate strings, so you decide to convert strings in S into integers.
You can convert a string that contains only digits into a decimal integer, for example, you can convert "101" into 101, "01" into 1, et al.
If an integer occurs multiple times, you only keep one of them.
For example, in the example shown above, all the integers are 1, 10, 101, 2, 3, 12, 23, 123.
Your task is to calculate the remainder of the sum of all the integers you get divided by 2012.
 

Input
There are no more than 20 test cases.
The test case starts by a line contains an positive integer N.
Next N lines each contains a string consists of one or more digits.
It's guaranteed that 1≤N≤10000 and the sum of the length of all the strings ≤100000.
The input is terminated by EOF.
 

Output
An integer between 0 and 2011, inclusive, for each test case.
 

Sample Input
5 101 123 09 000 1234567890
 

Sample Output
202
 

Source
 

Recommend
zhoujiaqi2010
 
 
可以采用后缀数组或者后缀自动机。我用的后缀数组。
用后缀数组跑一遍求出Height数组后。
 
排除有前导零的后缀。
用T[i] 表示后缀i的所有前缀的和。V[i]表示前缀i。
两个不同后缀前缀和的差T[i] - T[j-1] 表示结尾是从j到i的前缀和。
但是我们不仅是结尾从j到i,开头也有限制,开头是从j开始的,所以要去掉高位。
观察发现,对于每个前缀,高位的数字是一样的,末尾的零的个数不一样,所以我们在前缀和中减去高位的数字和111111....110的乘积。
 
如1234。 T[4]=1+12+123+1234  V[2]=12   计算3+34 = T[4]-T[2]-V[2]*110
 
 
然后就是Height数组派上用场的地方:
我们把以上的和相加会发现,总是会多加一部分。
因为后缀数组中没有了相同的后缀,但是这些后缀存在很多相同的前缀。于是我们要减去多加的那一部分(当然是先计算短的,再计算长的,再在长的里面减去重复计算的那部分)
 
#include <cstdio>
#include <cstring>
#define REP(i,n) for(int i=0;i<(n);i++)
const int maxn = 300000;
const int MOD = 2012;

int sa[maxn],height[maxn],rank[maxn],V[maxn],T[maxn],arrive[maxn],Pow[maxn],P[maxn];

int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void DA(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for (i=0;i<m;i++) ws[i]=0;
    for (i=0;i<n;i++) ws[x[i]=r[i]]++;
    for (i=1;i<m;i++) ws[i]+=ws[i-1];
    for (i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
    for (j=1,p=1;p<n;j*=2,m=p)
    {
        for (p=0,i=n-j;i<n;i++) y[p++] = i;
        for (i=0;i<n;i++) if (sa[i]>=j) y[p++]=sa[i]-j;
        for (i=0;i<n;i++) wv[i]=x[y[i]];
        for (i=0;i<m;i++) ws[i]=0;
        for (i=0;i<n;i++) ws[wv[i]]++;
        for (i=1;i<m;i++) ws[i]+=ws[i-1];
        for (i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
        for (t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
}
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for (i=0;i<n;++i) rank[sa[i]] = i;
    for (i=0;i<n;height[rank[i++]] = k)
        if (rank[i]) for (k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];++k);
}

char tmp[maxn];
int str[maxn];

int get(int l,int r)
{
    if (l > r) return 0;
    int ans = (T[r+1]-T[l])%MOD;
    ans -= V[l]*(Pow[r-l+1]);
    ans %= MOD;
    if (ans<0) ans += MOD;
    return ans;
}

int main()
{
    int n;

    Pow[0] = 1; Pow[1] = 10;
    for (int i=2;i<200000;++i)
        Pow[i] = (Pow[i-1]+1)*10%MOD;

    while (scanf("%d",&n)!=EOF)
    {
        int len = 0;
        int val = 0;
        REP(i,n)
        {
            scanf("%s",tmp);
            int tl = strlen(tmp);
            REP(j,tl)
            {
                str[len++] = tmp[j]-'0'+1;
                val = (val*10+str[len-1]-1)%MOD;
                P[len-1] = i;
                V[len] = val;
                T[len] = (T[len-1]+val)%MOD;
            }
            str[len++] = 11;
            P[len-1] = 11;
            V[len] = val;
            T[len] = (T[len-1]+val)%MOD;
            arrive[i] = len-2;
        }
        str[len-1] = 0;

        DA(str,sa,len,12);
        calheight(str,sa,len);

        int ans = 0;
        REP(i,len)
        {
            if (str[i]!=1 && str[i]!=11)
            if (i+height[rank[i]]<=arrive[P[i]])
            {
                ans += get(i,arrive[P[i]])-get(i,i+height[rank[i]]-1);
                ans %= MOD; if (ans < 0) ans += MOD;
            }
        }
        printf("%d\n",ans);
    }

    return 0;
}

相关文章推荐

hdu 4436 str2int ( 后缀数组 )

题意 : 给你n个数字字符串 ,

HDU 4436 str2int(后缀数组,一种统计n个digit字符串所有不同子串之和的方法)

str2int Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota...

HDU 4436 str2int 后缀数组(前缀和预处理)

题意: 给定n个包含(‘0’~‘9’)的字符串,求字符串不同子串的和。 首先对于n个字符串,我们通常是要用其他字符将其连成一个字符串的,这样便于用后缀数组进行处理。 其次,求不同子串,数...

HDU 4436 str2int 后缀数组 + 前缀和预处理 或 后缀自动机

题目大意: 对于给出的n个字符串(n 例如串"101"子串有 1, 10, 101, 0, 01, 1, 对应的不同整数是1, 10, 101 (0对求和没有影响, 可以略去) 大致思路: 首先...

hdu 4436 str2int 后缀数组、后缀自动机

http://acm.hdu.edu.cn/showproblem.php?pid=4436 给出n个串,问这些串中所有不同的子串可组成的数字之和模2012的结果是多少? 将n个串接到一起,中间用分隔...

【后缀自动机】 HDOJ 4436 str2int

一眼后缀数组,但是本弱想不出huo

hdu 4436 str2int (后缀自动机)

hdu 4436 str2int (后缀自动机) 题意:给出n个数字,数字很长,用字符串读入,长度总和为10^5。求这n个字符串的所有子串(不重复)的和取模2012 。 解题思路:后缀自动机。。因...

UESTC CDOJ 1551 Hesty Str1ng 后缀数组+乱搞

题目链接:Hesty Sr1ng Hesty Str1ng Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB ...

python 基础2 编码转换 pycharm 配置 运算符 基本数据类型int str list tupple dict for循环 enumerate序列方法 range和xrange

一 大纲 2 运算符 3 基本数据类型   整型:int   字符串:str   列表:list   元组:tuple   字典:dic 4 for e...

hdu 4436 str2int (SAM)

给n个只包含数字的字符串, 问这n个字符串能分解为多少种but
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【后缀数组】Str2int
举报原因:
原因补充:

(最多只允许输入30个字)