【后缀数组】Str2int

原创 2013年12月04日 10:35:46

str2int

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1089    Accepted Submission(s): 360


Problem Description
In this problem, you are given several strings that contain only digits from '0' to '9', inclusive.
An example is shown below.
101
123
The set S of strings is consists of the N strings given in the input file, and all the possible substrings of each one of them.
It's boring to manipulate strings, so you decide to convert strings in S into integers.
You can convert a string that contains only digits into a decimal integer, for example, you can convert "101" into 101, "01" into 1, et al.
If an integer occurs multiple times, you only keep one of them.
For example, in the example shown above, all the integers are 1, 10, 101, 2, 3, 12, 23, 123.
Your task is to calculate the remainder of the sum of all the integers you get divided by 2012.
 

Input
There are no more than 20 test cases.
The test case starts by a line contains an positive integer N.
Next N lines each contains a string consists of one or more digits.
It's guaranteed that 1≤N≤10000 and the sum of the length of all the strings ≤100000.
The input is terminated by EOF.
 

Output
An integer between 0 and 2011, inclusive, for each test case.
 

Sample Input
5 101 123 09 000 1234567890
 

Sample Output
202
 

Source
 

Recommend
zhoujiaqi2010
 
 
可以采用后缀数组或者后缀自动机。我用的后缀数组。
用后缀数组跑一遍求出Height数组后。
 
排除有前导零的后缀。
用T[i] 表示后缀i的所有前缀的和。V[i]表示前缀i。
两个不同后缀前缀和的差T[i] - T[j-1] 表示结尾是从j到i的前缀和。
但是我们不仅是结尾从j到i,开头也有限制,开头是从j开始的,所以要去掉高位。
观察发现,对于每个前缀,高位的数字是一样的,末尾的零的个数不一样,所以我们在前缀和中减去高位的数字和111111....110的乘积。
 
如1234。 T[4]=1+12+123+1234  V[2]=12   计算3+34 = T[4]-T[2]-V[2]*110
 
 
然后就是Height数组派上用场的地方:
我们把以上的和相加会发现,总是会多加一部分。
因为后缀数组中没有了相同的后缀,但是这些后缀存在很多相同的前缀。于是我们要减去多加的那一部分(当然是先计算短的,再计算长的,再在长的里面减去重复计算的那部分)
 
#include <cstdio>
#include <cstring>
#define REP(i,n) for(int i=0;i<(n);i++)
const int maxn = 300000;
const int MOD = 2012;

int sa[maxn],height[maxn],rank[maxn],V[maxn],T[maxn],arrive[maxn],Pow[maxn],P[maxn];

int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void DA(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for (i=0;i<m;i++) ws[i]=0;
    for (i=0;i<n;i++) ws[x[i]=r[i]]++;
    for (i=1;i<m;i++) ws[i]+=ws[i-1];
    for (i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
    for (j=1,p=1;p<n;j*=2,m=p)
    {
        for (p=0,i=n-j;i<n;i++) y[p++] = i;
        for (i=0;i<n;i++) if (sa[i]>=j) y[p++]=sa[i]-j;
        for (i=0;i<n;i++) wv[i]=x[y[i]];
        for (i=0;i<m;i++) ws[i]=0;
        for (i=0;i<n;i++) ws[wv[i]]++;
        for (i=1;i<m;i++) ws[i]+=ws[i-1];
        for (i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
        for (t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
}
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for (i=0;i<n;++i) rank[sa[i]] = i;
    for (i=0;i<n;height[rank[i++]] = k)
        if (rank[i]) for (k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];++k);
}

char tmp[maxn];
int str[maxn];

int get(int l,int r)
{
    if (l > r) return 0;
    int ans = (T[r+1]-T[l])%MOD;
    ans -= V[l]*(Pow[r-l+1]);
    ans %= MOD;
    if (ans<0) ans += MOD;
    return ans;
}

int main()
{
    int n;

    Pow[0] = 1; Pow[1] = 10;
    for (int i=2;i<200000;++i)
        Pow[i] = (Pow[i-1]+1)*10%MOD;

    while (scanf("%d",&n)!=EOF)
    {
        int len = 0;
        int val = 0;
        REP(i,n)
        {
            scanf("%s",tmp);
            int tl = strlen(tmp);
            REP(j,tl)
            {
                str[len++] = tmp[j]-'0'+1;
                val = (val*10+str[len-1]-1)%MOD;
                P[len-1] = i;
                V[len] = val;
                T[len] = (T[len-1]+val)%MOD;
            }
            str[len++] = 11;
            P[len-1] = 11;
            V[len] = val;
            T[len] = (T[len-1]+val)%MOD;
            arrive[i] = len-2;
        }
        str[len-1] = 0;

        DA(str,sa,len,12);
        calheight(str,sa,len);

        int ans = 0;
        REP(i,len)
        {
            if (str[i]!=1 && str[i]!=11)
            if (i+height[rank[i]]<=arrive[P[i]])
            {
                ans += get(i,arrive[P[i]])-get(i,i+height[rank[i]]-1);
                ans %= MOD; if (ans < 0) ans += MOD;
            }
        }
        printf("%d\n",ans);
    }

    return 0;
}

[面试] 算法(一) —— Str2Int

“123” ⇒ 123不允许使用 atoi 等其他类似的库函数;一种 naive 版:int str2int(const char* str) { if (str == NULL) ...
  • lanchunhui
  • lanchunhui
  • 2016年03月26日 17:30
  • 1125

hdu 4436 str2int(后缀数组)

str2int Problem Description In this problem, you are given several strings that contain only d...
  • a709743744
  • a709743744
  • 2016年03月01日 09:20
  • 404

hdu 4436 str2int 后缀数组

递推的办法不难想到,但是要去重,那就要后缀数组来找最长前缀了。后面递推的没想好,写搓了。 #include #include #include #include #include us...
  • yrleep
  • yrleep
  • 2013年11月13日 00:49
  • 939

hdu 4436 str2int 后缀数组、后缀自动机

http://acm.hdu.edu.cn/showproblem.php?pid=4436 给出n个串,问这些串中所有不同的子串可组成的数字之和模2012的结果是多少? 将n个串接到一起,中间用分隔...
  • wh2124335
  • wh2124335
  • 2013年11月07日 13:46
  • 849

实现自己的string2int

有些情况下我们需要把数字型字符串转换为相应的整数,例如“123”转为123。atoi函数 我们可以这么写#include int main() { char *p = "123"; char...
  • wangshubo1989
  • wangshubo1989
  • 2016年04月16日 01:39
  • 9002

[后缀数组+思路] hdu 4436 str2int

题意:给出n个字符串,求出所有字符串中出现的不同的整数和mod2012的值(即出现多次算一次)...
  • wdcjdtc
  • wdcjdtc
  • 2014年09月02日 16:17
  • 510

str2int

题目描述 In this problem, you are given several strings that contain only digits from '0' to '9', inc...
  • u012513972
  • u012513972
  • 2017年12月18日 11:20
  • 12754

五分钟搞懂后缀数组!后缀数组解析以及应用(附详解代码)

这是一篇本人自己对后缀数组的一些理解,有详细的说明以及附有详解的代码。...
  • YxuanwKeith
  • YxuanwKeith
  • 2016年02月05日 13:13
  • 17522

HDU 4436 str2int 后缀数组 字符串哈希 前缀和

题意:给出N个数字序列,每个序列的子串都能组成
  • u012139398
  • u012139398
  • 2014年09月12日 15:29
  • 579

后缀数组详解

转载自 : http://blog.csdn.net/j_sure/article/details/41777097 后缀数组学习笔记【详解】 老天,一个后缀数组不知道看了多少天,最后...
  • qq_34731703
  • qq_34731703
  • 2016年10月26日 14:50
  • 3534
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【后缀数组】Str2int
举报原因:
原因补充:

(最多只允许输入30个字)