【动态规划】locker

原创 2013年12月04日 11:05:19

locker

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1271    Accepted Submission(s): 549


Problem Description
A password locker with N digits, each digit can be rotated to 0-9 circularly.
You can rotate 1-3 consecutive digits up or down in one step.
For examples:
567890 -> 567901 (by rotating the last 3 digits up)
000000 -> 000900 (by rotating the 4th digit down)
Given the current state and the secret password, what is the minimum amount of steps you have to rotate the locker in order to get from current state to the secret password?
 

Input
Multiple (less than 50) cases, process to EOF.
For each case, two strings with equal length (≤ 1000) consists of only digits are given, representing the current state and the secret password, respectively.
 

Output
For each case, output one integer, the minimum amount of steps from the current state to the secret password.
 

Sample Input
111111 222222 896521 183995
 

Sample Output
2 12
 

Source
 

Recommend
zhoujiaqi2010   |   We have carefully selected several similar problems for you:  4812 4811 4810 4809 4808 
 
 
每次只能扳动一格。
暂讨论向上扳。
 
因为一次最多可以转动三格子。转移方程中涉及到了i,i+1,i+2的状态
f[i,j,k] 表示第i格已经扳到j,i+1格已经扳到k。前i-1个格子都到指定位置。的最小转动次数。
要把i格扳到指定位置,需要扳(s2[i]-s1[i]-j)%10次。
然而并不是每次都得转动i,i+1,i+2。也可以只转动i,i+1或只转动i。(我们可以想象成每次都是i主动转,带动后两个可转可不转)因此t>=a>=b。
(注意k和a的含义不同,j和t的含义也不同。因为j和k是之前被动地转,a是当前i+1被动地转,t是i主动在转)
 
向下转类似。
最后输出答案是最后一个格子后面两个格子都不转。
 
 
这道题的启示是:
1、无序有序化,有时就可以消除后效性(当然要利用一些手段比如整体看待)。
2、有多少元素参与转移,常常就会有多少元素在转移方程里,把它们当做一个整体来看待。
 
 
#include <cstdio>
#include <cstring>

int min(int a,int b)
{
    return a<b?a:b;
}


int f[1010][10][10];
char s1[1010];
char s2[1010];

int main()
{
    while (scanf("%s%s",s1,s2)!=EOF)
    {
        int len = strlen(s1);

        memset(f,0x3f,sizeof f);
        f[0][0][0] = 0;
        for (int i=0;i<len;i++)
        {
            for (int j=0;j<10;j++)
            {
                for (int k=0;k<10;k++)
                {
                    int t = (s2[i]-s1[i]-j+20)%10;
                    for (int a=0;a<=t;a++)
                    {
                        for (int b=0;b<=a;b++)
                        {
                            f[i+1][(k+a)%10][b] = min(f[i+1][(k+a)%10][b],f[i][j][k]+t);
                        }
                    }

                    t = 10-t;
                    for (int a=0;a<=t;a++)
                    {
                        for (int b=0;b<=a;b++)
                        {
                            f[i+1][(k-a+20)%10][(10-b)%10] = min(f[i+1][(k-a+20)%10][(10-b)%10],f[i][j][k]+t);
                        }
                    }
                }
            }
        }
        printf("%d\n",f[len][0][0]);

    }
    return 0;
}

相关文章推荐

100道动态规划——8 UVA 1631 Locker 递推,状态的定义以及状态转移方程

老实说这道题我没有做出来,没有做出来的原因是没有定义好一个恰当的状态,当然了,就算想到了这个状态,想到状态转移方程也是另外一回事情了,就当是积累经验好了。 其实后来一想这个状态定义的确实挺好的,满足...

hdu 4433 locker(动态规划)

locker Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...

动态规划,建桥问题代码

  • 2017年11月09日 17:06
  • 340KB
  • 下载

动态规划 源码

  • 2017年10月31日 10:51
  • 12KB
  • 下载

C++动态规划解决矩阵连乘问题

#include #include using namespace std; fun(int l,int n,int m[]) { int i,j,k,r; int **a = new int*...

算法之动态规划

  • 2016年01月05日 07:48
  • 5KB
  • 下载

动态规划算法(微软一面笔试题:股票交易,O(N)时间复杂度O(1)空间复杂度)

自从暑假面试被鄙视之后,回来就经常想这个问题,到今天应该快两个月了。在这个下午,我又拿出草稿纸,总算找到了思路,把它给搞定了。就像一个心愿一样,完结了。问题是这样的,如同题目:原题就不赘述了,化简之后...

逐时段摄动动态规划poa

  • 2015年11月28日 14:49
  • 32KB
  • 下载

动态规划集合划分

  • 2016年12月08日 23:13
  • 15KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【动态规划】locker
举报原因:
原因补充:

(最多只允许输入30个字)