547人阅读 评论(0)

# charge-station

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 876    Accepted Submission(s): 459

Problem Description
There are n cities in M^3's empire. M^3 owns a palace and a car and the palace resides in city 1. One day, she wants to travel around all the cities from her palace and finally back to her home. However, her car has limited energy and can only travel by no more than D meters. Before it was run out of energy, it should be charged in some oil station. Under M^3's despotic power, the judge is forced to build several oil stations in some of the cities. The judge must build an oil station in city 1 and building other oil stations is up to his choice as long as M^3 can successfully travel around all the cities.
Building an oil station in city i will cost 2i-1 MMMB. Please help the judge calculate out the minimum cost to build the oil stations in order to fulfill M^3's will.

Input
There are several test cases (no more than 50), each case begin with two integer N, D (the number of cities and the maximum distance the car can run after charged, 0 < N ≤ 128).
Then follows N lines and line i will contain two numbers x, y(0 ≤ x, y ≤ 1000), indicating the coordinate of city i.
The distance between city i and city j will be ceil(sqrt((xi - xj)2 + (yi - yj)2)). (ceil means rounding the number up, e.g. ceil(4.1) = 5)

Output
For each case, output the minimum cost to build the oil stations in the binary form without leading zeros.
If it's impossible to visit all the cities even after all oil stations are build, output -1 instead.

Sample Input
3 3
0 0
0 3
0 1

3 2
0 0
0 3
0 1

3 1
0 0
0 3
0 1

16 23
30 40
37 52
49 49
52 64
31 62
52 33
42 41
52 41
57 58
62 42
42 57
27 68
43 67
58 48
58 27
37 69

Sample Output
11
111
-1
10111011
Hint
In case 1, the judge should select (0, 0) and (0, 3) as the oil station which result in the visiting route: 1->3->2->3->1. And the cost is 2^(1-1) + 2^(2-1) = 3.


Source

Recommend
zhoujiaqi2010   |   We have carefully selected several similar problems for you:  4812 4811 4810 4809 4808

#include <cstdio>
#include <cstring>
#include <cmath>

int que[2000000];
int dist[140];
bool vis[140];
bool charge[140];
int x[140];
int y[140];
int n;
int D;

int Dist(int a,int b)
{
return ceil(sqrt(double(((x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b])))));
}

int min(int a,int b)
{
return a<b?a:b;
}

bool bfs()
{
int l = 0;
int r = 0;

for (int i=1;i<=n;i++)
{
vis[i] = false;
if (charge[i]) dist[i] = 0;
else dist[i] = 0x3f3f3f3f;
}
r ++;
que[r] = 1;
vis[1] = true;

while (l < r)
{
l ++;
int u = que[l];

for (int v=1;v<=n;v++)
{
int d = Dist(u,v);
if (!vis[v] && d<=D)
{
dist[v] = min(dist[v],dist[u]+d);
if (charge[v])
{
vis[v] = true;
r ++;
que[r] = v;
}
}
}
}

for (int i=1;i<=n;i++)
{
if (charge[i] && !vis[i]) return false;
if (!charge[i] && dist[i]*2>D) return false;
}
return true;
}

int main()
{
while (scanf("%d%d",&n,&D)==2)
{
for (int i=1;i<=n;i++)
charge[i] = true;
for (int i=1;i<=n;i++)
{
scanf("%d%d",x+i,y+i);
}
if (!bfs()) {printf("-1\n");continue;}
for (int i=n;i>1;i--)
{
charge[i] = false;
if (!bfs()) charge[i] = true;
}

int i = n;
while (i>1 && !charge[i]) i--;
while (i > 0)
{
printf("%d",int(charge[i]));
i --;
}
printf("\n");
}

return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：335020次
• 积分：7281
• 等级：
• 排名：第3141名
• 原创：419篇
• 转载：14篇
• 译文：0篇
• 评论：32条
文章分类
最新评论