【贪心】charge-station

原创 2013年12月04日 11:16:29

charge-station

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 876    Accepted Submission(s): 459


Problem Description
There are n cities in M^3's empire. M^3 owns a palace and a car and the palace resides in city 1. One day, she wants to travel around all the cities from her palace and finally back to her home. However, her car has limited energy and can only travel by no more than D meters. Before it was run out of energy, it should be charged in some oil station. Under M^3's despotic power, the judge is forced to build several oil stations in some of the cities. The judge must build an oil station in city 1 and building other oil stations is up to his choice as long as M^3 can successfully travel around all the cities.
Building an oil station in city i will cost 2i-1 MMMB. Please help the judge calculate out the minimum cost to build the oil stations in order to fulfill M^3's will.
 

Input
There are several test cases (no more than 50), each case begin with two integer N, D (the number of cities and the maximum distance the car can run after charged, 0 < N ≤ 128).
Then follows N lines and line i will contain two numbers x, y(0 ≤ x, y ≤ 1000), indicating the coordinate of city i.
The distance between city i and city j will be ceil(sqrt((xi - xj)2 + (yi - yj)2)). (ceil means rounding the number up, e.g. ceil(4.1) = 5)
 

Output
For each case, output the minimum cost to build the oil stations in the binary form without leading zeros.
If it's impossible to visit all the cities even after all oil stations are build, output -1 instead.
 

Sample Input
3 3 0 0 0 3 0 1 3 2 0 0 0 3 0 1 3 1 0 0 0 3 0 1 16 23 30 40 37 52 49 49 52 64 31 62 52 33 42 41 52 41 57 58 62 42 42 57 27 68 43 67 58 48 58 27 37 69
 

Sample Output
11 111 -1 10111011
Hint
In case 1, the judge should select (0, 0) and (0, 3) as the oil station which result in the visiting route: 1->3->2->3->1. And the cost is 2^(1-1) + 2^(2-1) = 3.
 

Source
 

Recommend
zhoujiaqi2010   |   We have carefully selected several similar problems for you:  4812 4811 4810 4809 4808 
 
 
难以想象居然是枚举每个点建或不建。如果不加入贪心,则外层循环就是2^n,不可承受。
贪心非常强力。观察代价是2^i,也就是说标号小的所有点的代价和小于标号大的代价,2^1+2^2+2^3+...2^(i-1)<2^i。贪心之后的枚举外外层循环是n。
 
因此我们先假设建所有的点。必然是可行解。
然后按标号从大到小删。检查是否依然连通,如果不连通则能不删。
 
首先我们需要判断从起点是否能走到所有已建好的加油站,包括从起点一步走到,和从一个加油站到另一个加油站。
然后判断是否能从最近的加油站到每个点往返一次,(根据三角形不等式和贪心加油站的油,这样做最优)。
 
如果都能,则可以删除该点。
 
#include <cstdio>
#include <cstring>
#include <cmath>

int que[2000000];
int dist[140];
bool vis[140];
bool charge[140];
int x[140];
int y[140];
int n;
int D;

int Dist(int a,int b)
{
    return ceil(sqrt(double(((x[a]-x[b])*(x[a]-x[b]) + (y[a]-y[b])*(y[a]-y[b])))));
}

int min(int a,int b)
{
    return a<b?a:b;
}

bool bfs()
{
    int l = 0;
    int r = 0;

    for (int i=1;i<=n;i++)
    {
        vis[i] = false;
        if (charge[i]) dist[i] = 0;
        else dist[i] = 0x3f3f3f3f;
    }
    r ++;
    que[r] = 1;
    vis[1] = true;

    while (l < r)
    {
        l ++;
        int u = que[l];

        for (int v=1;v<=n;v++)
        {
            int d = Dist(u,v);
            if (!vis[v] && d<=D)
            {
                dist[v] = min(dist[v],dist[u]+d);
                if (charge[v])
                {
                    vis[v] = true;
                    r ++;
                    que[r] = v;
                }
            }
        }
    }

    for (int i=1;i<=n;i++)
    {
        if (charge[i] && !vis[i]) return false;
        if (!charge[i] && dist[i]*2>D) return false;
    }
    return true;
}

int main()
{
    while (scanf("%d%d",&n,&D)==2)
    {
        for (int i=1;i<=n;i++)
            charge[i] = true;
        for (int i=1;i<=n;i++)
        {
            scanf("%d%d",x+i,y+i);
        }
        if (!bfs()) {printf("-1\n");continue;}
        for (int i=n;i>1;i--)
        {
            charge[i] = false;
            if (!bfs()) charge[i] = true;
        }

        int i = n;
        while (i>1 && !charge[i]) i--;
        while (i > 0)
        {
            printf("%d",int(charge[i]));
            i --;
        }
        printf("\n");
    }

    return 0;
}

 

相关文章推荐

hdu 4435 charge-station  (贪心+图论)

charge-station Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota...

Hdu 4435 charge-station(BFS+贪心)

题目地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=4435 思路:编号大的点应尽量避免建立加油站(2^0+2^1+2^2+......+2^id...

hdu 4435 charge-station【暴力+Bfs】

charge-station Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others...

HDU 4435 charge-station (2012年天津赛区现场赛E题)

1.题目描述:点击打开链接 2.解题思路:本题利用DFS解决。不过本题的解法颇为巧妙,注意到2^0+2^1+...+2^(i-1) 3.代码: #include #include #includ...

12天津region的charge_station题目

charge-station Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

hdu 4435 charge-station(几何+bfs)

最后输出的答案实际上从右wangzuo第i位就代表第i个城市

hdu4435-charge-station

http://acm.hdu.edu.cn/showproblem.php?pid=4435 bfs搜索 大致题意是 给出N个点,让你选择性地建立加油站,在第i个点建立加油站的费用为2...

HDU-4435-charge-station ( 2012 Asia Tianjin Regional Contest )

charge-station Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

[leetcode] 134 Gas Station(经典dp || 贪心)

(一)最容易想到的是O(n2)的解法 预处理出gas[i] - cost[i] 的数组,从每个非负的位置开始尝试,只要能够完成一个循环,就可以输出结果; 对于返回-1的情况,我们经过思考和推论可以...
  • NK_test
  • NK_test
  • 2015年09月28日 14:31
  • 1645

leetcode -- Gas Station -- 跟jump game像,重点--贪心

https://leetcode.com/problems/gas-station/类比jump game https://leetcode.com/problems/jump-game/思路1:贪心...
  • xyqzki
  • xyqzki
  • 2015年12月15日 13:09
  • 328
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【贪心】charge-station
举报原因:
原因补充:

(最多只允许输入30个字)