【LCA】Tree

原创 2012年03月22日 10:24:15

ural 1471,调了好久,终于发现是数组开小了。。。一开始crash了好久,改了几个数组。又crash了好久。。。最终发现漏了一个数组没有修改


1471. Tree

Time Limit: 2.0 second
Memory Limit: 64 MB
A weighted tree is given. You must find the distance between two given nodes.

Input

The first line contains the number of nodes of the tree n (1 ≤ n ≤ 50000). The nodes are numbered from 0 to n – 1.Each of the next n – 1 lines contains three integers u, v, w, which correspond to an edgewith weight w (0 ≤ w ≤ 1000) connecting nodes u and v.The next line contains the number of queries m (1 ≤ m ≤ 75000).In each of the next m lines there are two integers.

Output

For each query, output the distance between the nodes with the given numbers.

Sample

input output
3
1 0 1
2 0 1
3
0 1
0 2
1 2
1
1
2


这道题找任意两节点之间的距离。可以先任意找一个点作根(此任意要注意,必须是存在的点。。。我一开始指定0为根,结果有的数据0不存在)

建树的时候同时维护first,depth,dfsnum,为LCA转化为RMQ做准备,还要维护dist,为求两节点间距离做准备。

建一棵树之后,把LCA转化成RMQ来做,详见我转载的一篇文章。

两节点间距离等于两节点到根的距离之和减去最近公共祖先到根的距离的二倍。

血的教训。开数组一定要谨慎。depth,dfsnum的大小一定是n*2-1。参见那篇文章


#pragma comment(linker, "/STACK:16777216")

#include <cstdlib>
#include <iostream>
using std::cout;
using std::cin;

long n = 0;
long S = 0;
long T = 0;
long _dis = 0;
long ans = 0;

struct node
{
	long index;
	long val;
	node* next;	
};
node* head[50010];
bool vis[50010];//////////////////
long dist[50010];
//long dfsnum[50010];
//long depth[50010];
//long first[50010];
long dfsnum[100010];
long depth[100010];
long first[50010];


long st[100010][18];
long top = 0;

void dfs(long l,long f,long dep)
{
	dfsnum[++top] = l;
	depth[top] = dep;
	first[l] = top;
	
	dist[l] = _dis;
	for (node* nxt=head[l];nxt;nxt=nxt->next)
	{
		//if (nxt->index == f) continue;////
		if (!vis[nxt->index])
		{
			vis[nxt->index] = true;
			_dis += nxt->val;
			dfs(nxt->index,l,dep+1);
			_dis -= nxt->val;
			
			dfsnum[++top] = l;
			depth[top] = dep;
		}
	}
	
}

inline long getint() //这个getchar的输入对大数据量输入非常有用,甚至可以挽救效率不高的算法  
{  
    long ret = 0;  
    char tmp;  
    while (!isdigit(tmp = getchar()));  
    do {  
        ret = (ret << 3)+(ret << 1) + tmp - '0';  
    } while (isdigit(tmp = getchar()));  
    return ret;  
}  

inline void insert(long a,long b,long c)
{
	node* tmp = new node;
	tmp->index = b;
	tmp->val = c;
	tmp->next = head[a];
	head[a] = tmp;
}

inline long lg2(long a)
{
	long ans = 0;
	while (a>>=1)
	{
		ans++;
	}
	return ans;
}

inline long rmq(long a,long b)
{
	if (b < a)
	{
		long tmp = b;
		b = a;
		a = tmp;
	}
	long k = lg2(b-a+1);
	if (depth[st[a][k]]<depth[st[b-(1<<k)+1][k]])
		return st[a][k];
	return st[b-(1<<k)+1][k];
}

inline void rmqinit()
{
	for (long i=1;i<top+1;i++)
	{
		st[i][0] = i;
			#ifdef Debug
		//	std::cerr << st[i][0] << std::endl;
			#endif
	}
	for (long j=1;(1<<j)<=top;j++)
		for (long i=1;i<=top-(1<<j)+1;i++)
		{
			if (depth[st[i][j-1]]<depth[st[i+(1<<(j-1))][j-1]])
				st[i][j] = st[i][j-1];
			else st[i][j] = st[i+(1<<(j-1))][j-1];
			#ifdef Debug
//			if (st[i][j] > 40000)			
//				std::cerr << i << " " << j << " " << st[i][j] << std::endl;
			#endif
		}
}

int main()
{
	#ifdef Debug
	memset(st,0,sizeof(st));
	#endif
	
	
	freopen("tree.in","r",stdin);
	freopen("tree.out","w",stdout);
	n = getint();
	top = 0;
	for (long i=1;i<n+1;i++)
	{
		head[i] = 0;
		vis[i] = false;
	}
	
	for (long i=1;i<n;i++)
	{
		long a = getint();
		long b = getint();
		long c = getint();	
		insert(a,b,c);
		insert(b,a,c);	
	}
	for (long i=0;i<n+1;i++)//////////////
	{
		if (head[i])//////////////
		{
			vis[i] = true;///////////
			dfs(i,0,0);/////
			break;///
		}
	}
	rmqinit();
	long m = getint();
	for (long i=1;i<m+1;i++)
	{
		S = getint();
		T = getint();
		long cfa = dfsnum[rmq(first[S],first[T])];
		//#ifdef Debug
		//if (dist[S]+dist[T]-2*dist[cfa] == 3003907)
			printf("%ld\n",dist[S]+dist[T]-2*dist[cfa]);
		//#endif
	}
	return 0;	
}

附上datamaker,提供了一个生成树的思路(最完美的应该是用最小生成树),但是有个缺陷,可能会生成一片森林。。。将就用了

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <map>
using std::pair;
using std::map;
using std::make_pair;
map<pair<long,long>,bool> hash;
long n;
const long maxn = 50000;
const long maxm = 75000;
const long maxw = 1000;

int main()
{
	srand(time(0));
	freopen("tree.in","w",stdout);
//	n = rand()%maxn + 2;
n = maxn;
	printf("%ld\n",n);
	for (long i=1;i<n;i++)
	{
		long a=1;long b=1;long c;
		while (a == b || hash[make_pair(a,b)] || hash[make_pair(b,a)])
		{
			a = rand()%n ;
			b = rand()%n ;
		}
		hash[make_pair(a,b)] = true;
		c = rand()%maxw;
		printf("%ld %ld %ld\n",a,b,c);
	}
//	long m = rand()%maxm+1;
long m = maxm;
	printf("%ld\n",m);
	for (long i=1;i<m+1;i++)
	{
		long a;long b;
		a = rand()%n + 1;
		b = rand()%n + 1;
		printf("%ld %ld\n",a,b);
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

BZOJ 1977 Tree 次小生成树 (kruskal st表 倍增lca)

1977: [BeiJing2010组队]次小生成树 TreeTime Limit: 10 Sec Memory Limit: 512 MB Submit: 3121 Solved: 791 ...
  • w4149
  • w4149
  • 2017-07-10 17:13
  • 102

【BZOJ2588】【Spoj 10628.】 Count on a tree 可持久化线段树+lca

题解: 对于每个树上节点存一个版本的可持久化线段树,为它到根节点上所有权值的权值线段树(需要离散化)。 然后对于每次询问,这条链(a,b)的线段树就是:线段树a+线段树b−线段树lca−线段树fa...

LeetCode 236 Lowest Common Ancestor of a Binary Tree (LCA)

LeetCode 236 Lowest Common Ancestor of a Binary Tree (LCA)

hdu 4912 Paths on the tree LCA + 贪心

题意:给一棵树,有m 条paths,

HDU 5274 Dylans loves tree(DFS序+线段树+LCA离线查询模板+手动扩大内存)

题意: Dylans有一棵N个点的树。每个点有点权。树上节点标号为1∼N。 他得到了Q个询问,形式如下: ①0 x y:把第x个点的点权修改为y。 ②1 x y:对于x∼y...

codeforce 342E Xenia and Tree(分块 + LCA)

题意:             一棵树,结点1为红,其他点为蓝。          ...

hdu 4929 Another Letter Tree(LCA+DP)

hdu 4929 Another Letter Tree(LCA+DP) 题意:有一棵树n个节点(n 解法:一个很直观的想法,求出lca(设其为w)后,枚举x,求出a到w的路径上,能匹配s...

二叉搜索树(BST)的最近公共祖先(LCA)问题(Lowest Common Ancestor of a Binary Tree)

给定二叉搜索树中的任意两点,找出它们的最近公共祖先。 1、最近公共祖先(LCA)                           在上图这棵树中,绿色节...

CodeForces 609E Minimum spanning tree for each edge (lca+最小生成树+倍增)

题意:给出一个n个点m条边的无向图,问每条边所在的最小生成树的权值和是多少。 思路:首先求出整个图的最小生成树,然后对于任意一条边替换这条边两点到lca的最大边,这个值就是这条边所在的最小生成树的权值...

【LCA】 HDOJ 5156 Harry and Christmas tree

题意:给出一个树,以1号节点为根,然后每次操作给一个节点一个颜色,最后询问所有节点所对应的子树不同颜色的个数。 解法:预处理LCA,对操作排序,对每个颜色,节点按dfs序排序。然后扫一边,在每个颜色...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)