【斜率优化DP】Batch_Scheduling

原创 2012年03月27日 15:38:09
Batch Scheduling
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2272   Accepted: 1014

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

Source



做了这道题,才感觉自己斜率优化入门了。


这道题应该算是比较有难度的,因为需要逆向思维,从最后一次往前推,会容易得多。

假如正向推的话,就必须要知道当前的组数,以便乘上S。状态会多出一维,不便处理。

假设逆向推的话,则可以迭代,当前增加,则把后面组全都增加,最后推到第一组的时候,刚好最后一组加了组数那么多个S,其他类似。



这道题是经指点做的,因此比较顺利,但是后来有一个地方减号打成了乘号,硬是调了一上午。。。。。。

还有一个地方,纠结了很久,就是比较J和J‘的G函数g(i,j)、g(i,j')的时候,我想用除法化乘法来减小误差,我以为是负数所以要变号。。。结果两个分母都是负数,不变号。。。数学水平真的很重要呀(就是最后一个不等式处)

有个地方弄明白了,就是分离参数必须一边与i无关,一边只和i有关。否则就不能用斜率优化。

(因为G函数就相当于是斜率,根据sFi的增加,G是上凸的函数。但是G和i是无关的,可以这样理解,不管i取任何值,这整个图像的形状是不会变的。)


#include <cstdio>
#include <cmath>

typedef long long ll;

long n;long S;
long T[10010];
long F[10010];
ll ST[10010];
ll SF[10010];
long que[10010];
ll f[10010];

#define ST(a,b) (ST[a]-ST[b+1])

int main()
{
	freopen("batch.in","r",stdin);
	freopen("batch.out","w",stdout);
	scanf("%ld%ld",&n,&S);
	for (long i=1;i<n+1;i++)
	{
		scanf("%ld%ld",T+i,F+i);
	}
	for (long i=n;i>0;i--)
	{
		ST[i] = ST[i+1] + (ll)T[i];
		SF[i] = SF[i+1] + (ll)F[i];	
	}
	long l = 0;
	long r = 0;
	que[r] = n+1;
 	for (long i=n;i>0;i--)
	{
		while (l<r && f[que[l]]-f[que[l+1]] >= SF[i]*(ST[que[l]]-ST[que[l+1]])) l++;
		f[i] = f[que[l]] + ((ll)S+ST(i,que[l]-1))*SF[i];
		while (l<r && (f[que[r-1]]-f[que[r]])*(ST[que[r]]-ST[i]) >=
						(f[que[r]]-f[i])*(ST[que[r-1]]-ST[que[r]])) --r;
		que[++r] = i;
//		printf("%ld",f[1]);
	}
	printf("%I64d",f[1]);
	return 0;
}


斜率优化DP学习笔记

对于一类状态转移方程可以写成 f[i]=min/max(a[i]*b[j]+G[j])+H[i](a、H是只和i有关的函数,b、G是只和j有关的函数) 且a和b至少有一个是单调的动态规划问题,我们可以...
  • Tag_king
  • Tag_king
  • 2015年04月17日 10:19
  • 1466

斜率优化dp小结

单调队列优化在写斜率优化之前,我们来回顾一下单调队列优化的dp 1. 对于如下形式的dp方程 dp[i]=min{dp[j]+f(j)}(0...
  • lxc779760807
  • lxc779760807
  • 2016年05月10日 21:02
  • 2752

[模板] 斜率优化Dp详解

算法简介今天xinyue讲了斜率优化,全程懵逼,居然还有这么牛逼的东西。 于是与achen讨论了一下,总结一些东西。 斜率优化Dp其实是单调队列的推广,单调队列、旋转卡壳、斜率优化都利用了单调性降...
  • Bill_Yang_2016
  • Bill_Yang_2016
  • 2017年01月22日 19:29
  • 1567

DP斜率优化总结

DP斜率优化总结 寒假事情比较多,刚回来的一周都是聚会,外加自己不务正业了几天浪费了大半的时间,春节前后还是抽空学习了一下斜率优化DP。 理论基础见NOI2004年周源的论...
  • pi9nc
  • pi9nc
  • 2013年07月27日 21:45
  • 7620

动态规划(DP)优化之斜率优化讲解

“DP的斜率优化——对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能。斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映在坐标系上寻找解答的单调性,来在...
  • PomeCat
  • PomeCat
  • 2017年06月01日 16:23
  • 553

模型化理解单调队列优化和斜率优化DP

抽象理解,脱离题目
  • Leo_h1104
  • Leo_h1104
  • 2016年06月30日 20:32
  • 1046

斜率优化总结&基础题表

斜率优化
  • u010336344
  • u010336344
  • 2016年09月28日 21:42
  • 2215

POJ - 1180 Batch Scheduling(斜率优化DP)

题目大意:有N个任务,要求依次执行,每个任务有相应的执行时间和影响因素 你可以将多个任务划分到一个模块,也可以将一个任务划分到一个模块,模块完成的时间就是(该模块的所有任务的时间和 + T),模块完...
  • L123012013048
  • L123012013048
  • 2015年10月07日 14:10
  • 266

【笔记篇】斜率优化dp(三) APIO特别行动队

马上就要放大周了.. 真是不能更爽,.
  • Enzymii
  • Enzymii
  • 2018年01月26日 07:13
  • 52

BZOJ 3675 斜率优化DP

题目描述就不说了,自己看BZOJ吧 这道题首先要想明白一个问题,就是一个序列先切和后切获得的得分是一样的,就像要把一个序列分为abcd四块,先ab|cd和先a|bcd获得的结果相同,所以这道题就可以...
  • LZJ209
  • LZJ209
  • 2016年12月26日 14:26
  • 234
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【斜率优化DP】Batch_Scheduling
举报原因:
原因补充:

(最多只允许输入30个字)