MSSQL COLUMNS_UPDATED()值的解析

本文介绍了 SQL Server 中 COLUMNS_UPDATED() 函数的工作原理及其应用场景。该函数用于在触发器中判断哪些字段发生了变更,通过位操作来标识每列的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对COLUMNS_UPDATED()值的解析
 
是一个仅可在 Insert or Update trigger 中调用的方法.
该方法返回 一个 varbinary 的值, 存储了当次Insert 或是 Update 触发器所对应的记录在哪些字段上发生了Inserted or updated.
 
COLUMNS_UPDATED 函数以从左到右的顺序返回位,最左边的为最不重要的位。最左边的位表示表中的第一列;向右的下一位表示第二列,依此类推。如果在表上创建的触发器包含 8 列以上,则 COLUMNS_UPDATED 返回多个字节,最左边的为最不重要的字节。在 INSERT 操作中 COLUMNS_UPDATED 将对所有列返回 TRUE 值,因为这些列插入了显式值或隐性 (NULL) 值。
 
可以在触发器主体中的任意位置使用 COLUMNS_UPDATED。
 
COLUMNS_UPDATED返回值varbinary的算法:
 
COLUMNS_UPDATED()方法返回的 varbinary,是以每个小节存储8个字段(的修改状态)的方式记录了当前触发器所有列的修改情形.
 
因此程序以8个字段为一片段来循环处理所有字段.

SET @iVal= SubString(COLUMNS_UPDATED(), @i + 1, 1)
 
其中@i:
    如果前8列,@i =1
          9-16列,@i =2
          17-24列,@i = 3
    以次类推

程序用上面语句将一小节转化为整型. 
测试发现:
当@i=1:

当且仅当这一小片只有一个字段有修改时
1,@iVal = 1 = 2^(1-1);
2,@iVal =  2 = 2^(2-1);
3,@iVal =  4 = 2^(3-1);
4,@iVal =  8 = 2^(4-11);
5,@iVal =  16 = 2^(5-1);
6,@iVal =  32 = 2^(6-1);
7,@iVal =  64 = 2^(7-1);
8,@iVal =  128 = 2^(8-1);
而当且仅当1,2个字段有修改时:
@iVal = 2^(1-1) + 2^(2-1) = 3;
而第 2,5,8 三个字段有修改时:
@iVal = 2^(2-1) + 2^(5-1) + 2^(8-1) = 146;
...
当8个字段都有修改时:
@iVal = 2^(1-1) + 2^(2-1) + ... + 2^(8-1) = 255;
 
也就是说 无论怎样修改,@iVal的值,不外乎是2^n - 1(n>0 and n <9, int)这一数组型成的[和组合](组合时每个数组成员最多出现一次).
因此反过来推算: 对 @iVal 按 2^n分解, 就可算得被修改列的列表.
 
当@i>1时:
算法跟@i=1时一样,如:
 
     第9列=第1列
     第10列=第2列
     ....
 
     以次类推
 
 
用法:
 
     IF ( COLUMNS_UPDATED ( ) { bitwise_operator } updated_bitmask )
                { comparison_operator } column_bitmask [ ...n ]
 
 
    其中:
  
          bitwise_operator
            是用于比较运算的位运算符。
 
          updated_bitmask
            是整型位掩码,表示实际更新或插入的列。例如,表 t1 包含列 C1、C2、C3、C4 和 C5。
            假定表 t1 上有 UPDATE 触发器,若要检查列 C2、C3 和 C4 是否都有更新,指定值 14;
           若要检查是否只有列 C2 有更新,指定值 2。
 
          comparison_operator
             是比较运算符。使用等号 (=) 检查 updated_bitmask 中指定的所有列是否都实际进行了更新。
             使用大于号 (>) 检查 updated_bitmask 中指定的任一列或某些列是否已更新。
 
          column_bitmask
               是要检查的列的整型位掩码,用来检查是否已更新或插入了这些列。
 
 
举例:
下例测试影响 Northwind.dbo.Customers 表中的第 3、第 5 或第 9 列的更新。
USE Northwind
DROP TRIGGER  tr1
GO
CREATE TRIGGER tr1 ON Customers
FOR UPDATE AS
   IF ( (SUBSTRING(COLUMNS_UPDATED(),1,1)=power(2,(3-1))
      + power(2,(5-1))) 
      AND (SUBSTRING(COLUMNS_UPDATED(),2,1)=power(2,(1-1)))
      ) 
   PRINT 'Columns 3, 5 and 9 updated'
GO

UPDATE Customers 
   SET ContactName=ContactName,
      Address=Address,
      Country=Country
GO
""" title: SQL Server Access author: MENG author_urls: - https://github.com/mengvision description: A tool for reading database information and executing SQL queries, supporting multiple databases such as MySQL, PostgreSQL, SQLite, and Oracle. It provides functionalities for listing all tables, describing table schemas, and returning query results in CSV format. A versatile DB Agent for seamless database interactions. required_open_webui_version: 0.5.4 requirements: pymysql, sqlalchemy, cx_Oracle version: 0.1.6 licence: MIT # Changelog ## [0.1.6] - 2025-03-11 ### Added - Added `get_table_indexes` method to retrieve index information for a specific table, supporting MySQL, PostgreSQL, SQLite, and Oracle. - Enhanced metadata capabilities by providing detailed index descriptions (e.g., index name, columns, and type). - Improved documentation to include the new `get_table_indexes` method and its usage examples. - Updated error handling in `get_table_indexes` to provide more detailed feedback for unsupported database types. ## [0.1.5] - 2025-01-20 ### Changed - Updated `list_all_tables` and `table_data_schema` methods to accept `db_name` as a function parameter instead of using `self.valves.db_name`. - Improved flexibility by decoupling database name from class variables, allowing dynamic database selection at runtime. ## [0.1.4] - 2025-01-17 ### Added - Added support for Oracle database using `cx_Oracle` driver. - Added dynamic engine creation in each method to ensure fresh database connections for every operation. - Added support for Oracle-specific queries in `list_all_tables` and `table_data_schema` methods. ### Changed - Moved `self._get_engine()` from `__init__` to individual methods for better flexibility and tool compatibility. - Updated `_get_engine` method to support Oracle database connection URL. - Improved `table_data_schema` method to handle Oracle-specific column metadata. ### Fixed - Fixed potential connection issues by ensuring each method creates its own database engine. - Improved error handling for Oracle-specific queries and edge cases. ## [0.1.3] - 2025-01-17 ### Added - Added support for multiple database types (e.g., MySQL, PostgreSQL, SQLite) using SQLAlchemy. - Added configuration flexibility through environment variables or external configuration files. - Enhanced query security with stricter validation and SQL injection prevention. - Improved error handling with detailed exception messages for better debugging. ### Changed - Replaced `pymysql` with SQLAlchemy for broader database compatibility. - Abstracted database connection logic into a reusable `_get_engine` method. - Updated `table_data_schema` method to support multiple database types. ### Fixed - Fixed potential SQL injection vulnerabilities in query execution. - Improved handling of edge cases in query validation and execution. ## [0.1.2] - 2025-01-16 ### Added - Added support for specifying the database port with a default value of `3306`. - Abstracted database connection logic into a reusable `_get_connection` method. ## [0.1.1] - 2025-01-16 ### Added - Support for additional read-only query types: `SHOW`, `DESCRIBE`, `EXPLAIN`, and `USE`. - Enhanced query validation to block sensitive keywords (e.g., `INSERT`, `UPDATE`, `DELETE`, `CREATE`, `DROP`, `ALTER`). ### Fixed - Improved handling of queries starting with `WITH` (CTE queries). - Fixed case sensitivity issues in query validation. ## [0.1.0] - 2025-01-09 ### Initial Release - Basic functionality for listing tables, describing table schemas, and executing `SELECT` queries. - Query results returned in CSV format. """ import os from typing import List, Dict, Any from pydantic import BaseModel, Field import re from sqlalchemy import create_engine, text from sqlalchemy.engine.base import Engine from sqlalchemy.exc import SQLAlchemyError class Tools: class Valves(BaseModel): db_host: str = Field( default="localhost", description="The host of the database. Replace with your own host.", ) db_user: str = Field( default="admin", description="The username for the database. Replace with your own username.", ) db_password: str = Field( default="admin", description="The password for the database. Replace with your own password.", ) db_name: str = Field( default="db", description="The name of the database. Replace with your own database name.", ) db_port: int = Field( default=3306, # Oracle 默认端口 description="The port of the database. Replace with your own port.", ) db_type: str = Field( default="mysql", description="The type of the database (e.g., mysql, postgresql, sqlite, oracle).", ) def __init__(self): """ Initialize the Tools class with the credentials for the database. """ print("Initializing database tool class") self.citation = True self.valves = Tools.Valves() def _get_engine(self) -> Engine: """ Create and return a database engine using the current configuration. """ if self.valves.db_type == "mysql": db_url = f"mysql+pymysql://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/{self.valves.db_name}" elif self.valves.db_type == "postgresql": db_url = f"postgresql://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/{self.valves.db_name}" elif self.valves.db_type == "sqlite": db_url = f"sqlite:///{self.valves.db_name}" elif self.valves.db_type == "oracle": db_url = f"oracle+cx_oracle://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/?service_name={self.valves.db_name}" else: raise ValueError(f"Unsupported database type: {self.valves.db_type}") return create_engine(db_url) def list_all_tables(self, db_name: str) -> str: """ List all tables in the database. :param db_name: The name of the database. :return: A string containing the names of all tables. """ print("Listing all tables in the database") engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: if self.valves.db_type == "mysql": result = conn.execute(text("SHOW TABLES;")) elif self.valves.db_type == "postgresql": result = conn.execute( text( "SELECT table_name FROM information_schema.tables WHERE table_schema = 'public';" ) ) elif self.valves.db_type == "sqlite": result = conn.execute( text("SELECT name FROM sqlite_master WHERE type='table';") ) elif self.valves.db_type == "oracle": result = conn.execute(text("SELECT table_name FROM user_tables;")) else: return "Unsupported database type." tables = [row[0] for row in result.fetchall()] if tables: return ( "Here is a list of all the tables in the database:\n\n" + "\n".join(tables) ) else: return "No tables found." except SQLAlchemyError as e: return f"Error listing tables: {str(e)}" def get_table_indexes(self, db_name: str, table_name: str) -> str: """ Get the indexes of a specific table in the database. :param db_name: The name of the database. :param table_name: The name of the table. :return: A string describing the indexes of the table. """ print(f"Getting indexes for table: {table_name}") engine = self._get_engine() try: key, cloumn = 0, 1 with engine.connect() as conn: if self.valves.db_type == "mysql": query = text(f"SHOW INDEX FROM {table_name}") key, cloumn = 2, 4 elif self.valves.db_type == "postgresql": query = text( """ SELECT indexname, indexdef FROM pg_indexes WHERE tablename = :table_name; """ ) elif self.valves.db_type == "sqlite": query = text( """ PRAGMA index_list(:table_name); """ ) elif self.valves.db_type == "oracle": query = text( """ SELECT index_name, column_name FROM user_ind_columns WHERE table_name = :table_name; """ ) else: return "Unsupported database type." result = conn.execute(query) indexes = result.fetchall() if not indexes: return f"No indexes found for table: {table_name}" description = f"Indexes for table '{table_name}':\n" for index in indexes: description += f"- {index[key]}: {index[cloumn]}\n" return description # result = conn.execute(query) # description = result.fetchall() # if not description: # return f"No indexes found for table: {table_name}" # column_names = result.keys() # description = f"Query executed successfully. Below is the actual result of the query {query} running against the database in CSV format:\n\n" # description += ",".join(column_names) + "\n" # for row in description: # description += ",".join(map(str, row)) + "\n" # return description except SQLAlchemyError as e: return f"Error getting indexes: {str(e)}" def table_data_schema(self, db_name: str, table_name: str) -> str: """ Describe the schema of a specific table in the database, including column comments. :param db_name: The name of the database. :param table_name: The name of the table to describe. :return: A string describing the data schema of the table. """ print(f"Database: {self.valves.db_name}") print(f"Describing table: {table_name}") engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: if self.valves.db_type == "mysql": query = text( " SELECT COLUMN_NAME, COLUMN_TYPE, IS_NULLABLE, COLUMN_KEY, COLUMN_COMMENT " " FROM INFORMATION_SCHEMA.COLUMNS " f" WHERE TABLE_SCHEMA = '{self.valves.db_name}' AND TABLE_NAME = '{table_name}';" ) elif self.valves.db_type == "postgresql": query = text( """ SELECT column_name, data_type, is_nullable, column_default, '' FROM information_schema.columns WHERE table_name = :table_name; """ ) elif self.valves.db_type == "sqlite": query = text("PRAGMA table_info(:table_name);") elif self.valves.db_type == "oracle": query = text( """ SELECT column_name, data_type, nullable, data_default, comments FROM user_tab_columns LEFT JOIN user_col_comments ON user_tab_columns.table_name = user_col_comments.table_name AND user_tab_columns.column_name = user_col_comments.column_name WHERE user_tab_columns.table_name = :table_name; """ ) else: return "Unsupported database type." # result = conn.execute( # query, {"db_name": db_name, "table_name": table_name} # ) result = conn.execute(query) columns = result.fetchall() if not columns: return f"No such table: {table_name}" description = ( f"Table '{table_name}' in the database has the following columns:\n" ) for column in columns: if self.valves.db_type == "sqlite": column_name, data_type, is_nullable, _, _, _ = column column_comment = "" elif self.valves.db_type == "oracle": ( column_name, data_type, is_nullable, data_default, column_comment, ) = column else: ( column_name, data_type, is_nullable, column_key, column_comment, ) = column description += f"- {column_name} ({data_type})" if is_nullable == "YES" or is_nullable == "Y": description += " [Nullable]" if column_key == "PRI": description += " [Primary Key]" if column_comment: description += f" [Comment: {column_comment}]" description += "\n" return description except SQLAlchemyError as e: return f"Error describing table: {str(e)}" def execute_read_query(self, query: str) -> str: """ Execute a read query and return the result in CSV format. :param query: The SQL query to execute. :return: A string containing the result of the query in CSV format. """ print(f"Executing query: {query}") normalized_query = query.strip().lower() if not re.match( r"^\s*(select|with|show|describe|desc|explain|use)\s", normalized_query ): return "Error: Only read-only queries (SELECT, WITH, SHOW, DESCRIBE, EXPLAIN, USE) are allowed. CREATE, DELETE, INSERT, UPDATE, DROP, and ALTER operations are not permitted." sensitive_keywords = [ "insert", "update", "delete", "create", "drop", "alter", "truncate", "grant", "revoke", "replace", ] for keyword in sensitive_keywords: if re.search(rf"\b{keyword}\b", normalized_query): return f"Error: Query contains a sensitive keyword '{keyword}'. Only read operations are allowed." engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: result = conn.execute(text(query)) rows = result.fetchall() if not rows: return "No data returned from query." column_names = result.keys() csv_data = f"Query executed successfully. Below is the actual result of the query {query} running against the database in CSV format:\n\n" csv_data += ",".join(column_names) + "\n" for row in rows: csv_data += ",".join(map(str, row)) + "\n" return csv_data except SQLAlchemyError as e: return f"Error executing query: {str(e)}" 将上面的工具连接到Microsoft sql server
最新发布
07-23
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值