使用Hibernate进行大数据量的性能测试

转载 2007年09月16日 00:14:00

近日为是否在项目中使用Hibernate进行大数据量的性能测试,有一些总结,
1) 在处理大数据量时,会有大量的数据缓冲保存在Session的一级缓存中,这缓存大太时会严重显示性能,所以在使用Hibernate处理大数据量的,可以使用session.clear()或者session. Evict(Object) 在处理过程中,清除全部的缓存或者清除某个对象。
2) 对大数据量查询时,慎用list()或者iterator()返回查询结果,
1. 使用List()返回结果时,Hibernate会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。
2. 而使用iterator()返回结果时,在每次调用iterator.next()返回对象并使用对象时,Hibernate才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使用时,使用iterator()才有优势。
3. 对于大数据量,使用qry.scroll()可以得到较好的处理速度以及性能。而且直接对结果集向前向后滚动。
3) 对于关联操作,Hibernate虽然可以表达复杂的数据关系,但请慎用,使数据关系较为简单时会得到较好的效率,特别是较深层次的关联时,性能会很差。
4) 对含有关联的PO(持久化对象)时,若default-cascade="all"或者 “save-update”,新增PO时,请注意对PO中的集合的赋值操作,因为有可能使得多执行一次update操作。
5) 在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时方会初始化,这样可使得节省内存空间以及减少数据库的负荷,而且若PO中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。
6) 对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在开发过程中,请将show_sql设置为true,深入了解Hibernate的处理过程,尝试不同的方式,可以使得效率提升。
7) Hibernate是以JDBC为基础,但是Hibernate是对JDBC的优化,其中使用Hibernate的缓冲机制会使性能提升,如使用二级缓存以及查询缓存,若命中率较高明,性能会是到大幅提升。
8) Hibernate可以通过设置hibernate.jdbc.fetch_size,hibernate.jdbc.batch_size等属性,对Hibernate进行优化。

各位高手,请提宝贵意见。

 

相关文章推荐

使用Hibernate进行大数据量的性能测试

在项目中使用Hibernate进行大数据量的性能测试,有一些总结,     1) 在处理大数据量时,会有大量的数据缓冲保存在Session的一级缓存中,这缓存大太时会严重显示性能,所以在使用Hibe...

使用Hibernate进行大数据量的性能测试

使用Hibernate进行大数据量的性能测试 在项目中使用Hibernate进行大数据量的性能测试,有一些总结,          1) 在处理大数据量时,会有大量的数据缓...

NHibernate的大数据量插入的简单性能测试

NHibernate的大数据量插入的简单性能测试   很多人对于ORM的性能有偏见, 认为其性能会很差. 当然在大部分情况下, 查询的性能可以根据检索策略, 延迟加载, 二级缓存等等进行调优, 这...
  • A_post
  • A_post
  • 2012-07-13 17:40
  • 1603

分享WebService大数据量处理的优化性能进行网络传输

1)直接返回DataSet对象 特点:通常组件化的处理机制,不加任何修饰及处理; 优点:代码精减、易于处理,小数据量处理较快; 缺点:大数据量的传递处理慢,消耗网络资源; 建议:当应用系统在内网、专网...

Hibernate进行大数据量处理时的优化操作

近日为是否在项目中使用Hibernate进行大数据量的性能测试,有一些总结,  1) 在处理大数据量时,会有大量的数据缓冲保存在Session的一级缓存中,这缓存大太时会严重显示性能,所以在使用Hi...

Hibernate的cache管理,性能优化(大数据量)

Hibernate的cache管理 Cache就是缓存,它往往是提高系统性能的最重要手段,对数据起到一个蓄水池和缓冲的作用。Cache对于大量依赖数据读取操作的系统而言尤其重要。在大并发量的情况...

Extjs甘特图的大数据量性能优化

Extjs甘特图的大数据量和性能优化 Extjs甘特图所能支持的数据量,以及界面的渲染和操作性能,是衡量一个甘特图组件是否符合项目需要的重要指标。 为了支持超过万级超大数据量的甘特图,Ex...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)