一直觉得codeforces上的题解法都很新奇,这个也不例外,说说题意,
最大10^5的数,进行10^5次操作,每一次进行加入或者删除一个数,加入时:只有与已加入的数互素才能加入,不能加入的,输出原因(与某个不互素,或者,已经加入)。删除时:输出删除成功,或者尚未加入。
这个题看起来不简单,经过分析之后,我发现,对于10^5这么大的数,只能最多有7个不同的素数的幂的积的形式,要使互素,也就是说,没有共同的素数因子,按照这个思路,我们对每一个数的素数因子进行标记,插入的时候,就可以查询插入的这个数的素数因子有没有出现
这个思路的时间复杂度是O(10^5*7),这个复杂度是可以解决的。
但是,其中有一个需要输出与第几个互素,这个也需要标记。ok,代码见下面
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define N 1000010
int prime[N];
bool isPrime[N+1];
int size;
void getPrime() {
size = 0;
memset(isPrime,true,sizeof(isPrime));
int i;
for(i=2; i<=N/2; i++) {
if(isPrime[i]) //i是素数
for(int j=i+i; j<=N; j+=i)
isPrime[j]=0;
}
for(i=2; i<=N; i++) {
if(isPrime[i])
prime[size++]=i;
}
}
bool active[100010];
int data[100010][10];
int count[100010];//计数出现这个素数的j
int main()
{
//cout << 2*3*5*7*11*13*17;
getPrime();
for(int i = 0;i < size;i++)
{
for(int j = prime[i];j < 100010;j += prime[i])
data[j][ ++data[j][0] ] = prime[i];
}
int n,m;
scanf("%d%d",&n,&m);
memset(active,0,sizeof(active));
memset(count,0,sizeof(count));
char c[2];int t;
for(int i = 0;i < m;i++)
{
scanf("%s%d",c,&t);
if(c[0] == '+')
{
//1 success 2 already on 3冲突
if(active[t])
printf("Already on\n");
else
{
bool b = 0;
for(int j = 1;j <= data[t][0];j++)
if(count[ data[t][j] ])
{
printf("Conflict with %d\n",count[ data[t][j] ]);
b = 1;break;
}
if(!b)
{
for(int j = 1;j <= data[t][0];j++)
count[ data[t][j] ] = t;
printf("Success\n");
active[t] = 1;
}
}
}else //--
{
if(!active[t])
printf("Already off\n");
else
{
for(int j = 1;j <= data[t][0];j++)
count[ data[t][j] ] = 0;
printf("Success\n");
active[t] = 0;
}
}
}
return 0;
}