Codeforces Round #109 (Div. 2) D. Colliders 数学

17 篇文章 0 订阅
3 篇文章 0 订阅

一直觉得codeforces上的题解法都很新奇,这个也不例外,说说题意,

最大10^5的数,进行10^5次操作,每一次进行加入或者删除一个数,加入时:只有与已加入的数互素才能加入,不能加入的,输出原因(与某个不互素,或者,已经加入)。删除时:输出删除成功,或者尚未加入。

这个题看起来不简单,经过分析之后,我发现,对于10^5这么大的数,只能最多有7个不同的素数的幂的积的形式,要使互素,也就是说,没有共同的素数因子,按照这个思路,我们对每一个数的素数因子进行标记,插入的时候,就可以查询插入的这个数的素数因子有没有出现

这个思路的时间复杂度是O(10^5*7),这个复杂度是可以解决的。

但是,其中有一个需要输出与第几个互素,这个也需要标记。ok,代码见下面

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;

#define N 1000010
int prime[N];
bool isPrime[N+1];
int size;

void getPrime() {
    size = 0;
    memset(isPrime,true,sizeof(isPrime));
    int i;
    for(i=2; i<=N/2; i++) {
        if(isPrime[i])  //i是素数
            for(int j=i+i; j<=N; j+=i)
                isPrime[j]=0;
    }
    for(i=2; i<=N; i++) {
        if(isPrime[i])
            prime[size++]=i;
    }
}

bool active[100010];
int data[100010][10];
int count[100010];//计数出现这个素数的j

int main()
{
    //cout << 2*3*5*7*11*13*17;
    getPrime();
    for(int i = 0;i < size;i++)
    {
        for(int j = prime[i];j < 100010;j += prime[i])
            data[j][ ++data[j][0] ] = prime[i];
    }
    int n,m;
    scanf("%d%d",&n,&m);
    memset(active,0,sizeof(active));
    memset(count,0,sizeof(count));
    char c[2];int t;
    for(int i = 0;i < m;i++)
    {
        scanf("%s%d",c,&t);
        if(c[0] == '+')
        {
            //1 success 2 already on 3冲突
            if(active[t])
                printf("Already on\n");
            else
            {
                bool b = 0;
                for(int j = 1;j <= data[t][0];j++)
                    if(count[ data[t][j] ])
                    {
                        printf("Conflict with %d\n",count[ data[t][j] ]);
                        b = 1;break;
                    }
                if(!b)
                {
                    for(int j = 1;j <= data[t][0];j++)
                        count[ data[t][j] ] = t;
                    printf("Success\n");
                    active[t] = 1;
                }
            }
        }else //--
        {
            if(!active[t])
                printf("Already off\n");
            else
            {
                for(int j = 1;j <= data[t][0];j++)
                    count[ data[t][j] ] = 0;
                printf("Success\n");
                active[t] = 0;
            }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值