关闭

动态规划——数组中最长递减子序列

标签: fundelete测试n2
7095人阅读 评论(3) 收藏 举报
分类:

-----Edit by ZhuSenlin HDU

求一个数组的最长递减子序列比如{9,4,3,2,5,4,3,2}的最长递减子序列为{9,5,4,3,2}

分析:典型的动态规划题目,对每一个数计算由它开始的最大递减子序列的个数,并存放到一张映射表中。例如对数组a[n]有

……

然后利用求得的映射表及最大子序列个数获取原数组中的元素。对于{9,4,3,2,5,4,3,2}我们求得最大子序列个数为nMaxLen=5,表为pTable={5,3,2,1,4,3,2,1}。那么pTable中以此找出nMaxLen,nMaxLen-1,…,1对应的原数组的值即为最大递减子序列。对应的为{9,5,4,3,2}.复杂度为O(n2)

代码如下

#include <iostream>
#include <cstring>
using namespace std;

int Fun(int aIn[],int pTable[],int nLen)
{
	int nMaxLen = 0;
	for(int i = nLen-1; i >= 0; --i) {
		int nMax = 0;
		for(int j = i+1; j < nLen; ++j) {
			if(aIn[j] < aIn[i]) {
				nMax = nMax < pTable[j] ? pTable[j] : nMax;
			}
		}
		pTable[i] = 1+nMax;
		nMaxLen = nMaxLen<pTable[i] ? pTable[i] : nMaxLen;
	}

	return nMaxLen;
}

void PrintMaxSubsequence(int aIn[], int pTable[], int nMaxLen, int nLen)
{
	for(int i = 0,j=0; i < nLen; ++i) {
		if(pTable[i] == nMaxLen){
			cout << aIn[i] << " ";
			nMaxLen--;
		}
	}
	cout << endl;
}


测试代码如下:

int main()
{
	int aIn[] = {9,4,3,2,5,4,3,2};
	int nLen = sizeof(aIn)/sizeof(int);
	int* pTable = new int[nLen];
	memset(pTable,0,nLen*sizeof(int));
	int nMaxLen = Fun(aIn,pTable,nLen);
	cout << nMaxLen << endl;
	PrintMaxSubsequence(aIn,pTable,nMaxLen,nLen);
	delete [] pTable;
	return 0;
}

 

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:195289次
    • 积分:1825
    • 等级:
    • 排名:千里之外
    • 原创:21篇
    • 转载:1篇
    • 译文:0篇
    • 评论:77条
    最新评论