ZOJ 3690 Choosing number

原创 2015年07月08日 09:34:51

Choosing number

Time Limit: 2 Seconds      Memory Limit: 65536 KB

There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn't equal or less than k. Apart from this rule, there are no more limiting conditions.

And you need to calculate how many ways they can choose the numbers obeying the rule.

Input

There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).

Output

One line for each case. The number of ways module 1000000007.

Sample Input

4 4 1

Sample Output

216

题意:有N个人,M个数字,现在N个人站成一排,每个人都编个号,如果相邻两个人编号相同,那么他们只能在k+1到M中选择数字,问有多少种不同的选择方法。

思路:首先,利用DP推到出递推式,由于N 很大,所以可以用矩阵快速幂来优化一下。

f[i][0]表示第i个人,在1到k之间选择一个数,f[i][1]表示第i个人在k+1到m之间选择一个数。此时前i个人共有f[i][0]+f[i][1]种方法

f[i][0]=f[i-1][0]*(k-1)+f[i-1][1]*k

f[i][1]=f[i-1][0](m-k)+f[i-1][1]*(m-k)


f[1][0]=k,f[1][1]=m-k;


ans=f[i][0]+f[i][1]

ans=(f[1][0],f[1][1]) |k-1,m-k|^(n-1)

                                 |k,   m-k|

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
typedef long long ll;
const ll mod=1e9+7;

using namespace std;

struct matrix
{
    ll f[2][2];
};

matrix mul(matrix a,matrix b)//矩阵乘法
{
    matrix c;
    memset(c.f,0,sizeof c.f);

    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            for(int k=0;k<2;k++)
            {
                c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j])%mod;
            }
        }
    }
    return c;
}

matrix fun(matrix a,ll n)//快速幂
{
    matrix s;
    s.f[0][0]=1;s.f[1][1]=1;
    s.f[0][1]=0;s.f[1][0]=0;

    while(n)
    {
        if(n&1)
        s=mul(s,a);
        a=mul(a,a);
        n=n>>1;
    }
    return s;
}

int main()
{
    ll n,k,m;
    while(cin>>n>>m>>k)
    {
        matrix e;
        e.f[0][0]=k-1;e.f[1][1]=m-k;
        e.f[0][1]=m-k;e.f[1][0]=k;
        e=fun(e,n-1);
        ll ans;
        ans=( k*e.f[0][0]+(m-k)*e.f[1][0]+k*e.f[0][1]+(m-k)*e.f[1][1] )%mod;

        cout<<ans<<endl;

    }
    return 0;
}





相关文章推荐

ZOJ 3690 Choosing number(矩阵快速幂)

题目地址:ZOJ 3690 假设F(n)表示前n个人第n个人选择的数大于k的个数,G(n)表示的是前n个人第n个人选择的数小于等于k的个数    那么F(n) = F(n-1)*(m-k)+G(n...

【矩阵快速幂】ZOJ 3690 Choosing number

矩阵快速幂。。。顾名思义就是利用矩阵的结合律来进行快速幂运算。。。嘛,笔者也是做这道题两小时前把矩阵快速幂搞明白了的。。。所以其实还不熟= = 题目地址:http://acm.zju.edu...

zoj 3690 Choosing number(矩阵乘法+dp)

题意:有n个人,每个人从1~m选一个数,但是相邻的人如果选了一样的数,那么这个数要大于k,问所有的选法。 思路:首先用dp[i][j]表示前i个人,第i个人选了第j个数字,那么 dp[i][j]=...
  • qian99
  • qian99
  • 2014年03月12日 20:07
  • 613

ZOJ 3690 Choosing number(矩阵快速幂)

Choosing number Time Limit: 2 Seconds      Memory Limit: 65536 KB There are n people standing ...

ZOJ 3690 Choosing number(dp矩阵优化)

Choosing number Time Limit: 2 Seconds      Memory Limit: 65536 KB There are n people standin...

zoj 3690 Choosing number 递推+矩阵快速幂

#include #include #define mod 1000000007 struct matrix { long long a[3][3]; }e,f; matrix mult...

ZOJ 3690 矩阵快速幂乘

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3690 题意:有n个人站在一排,另外有m个号码,每个人都选其中的一...

ZOJ3436 July Number

July Number Time Limit: 2 Seconds      Memory Limit: 65536 KB The digital difference of a positive...

zoj3816,Generalized Palindromic Number,牡丹江网络赛,乱搞

zoj3816,Generalized Palindromic Number 又怒坑队友。 三小时没写出这题…… 住兽医院住久了脑子都不好使了。 只需要枚举哪几位不变,再枚举一个数字作...

ZOJ 3886 Nico number(线段树)

Nico Number Time Limit: 2 Seconds      Memory Limit: 262144 KB Kousaka Honoka and Minami K...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ZOJ 3690 Choosing number
举报原因:
原因补充:

(最多只允许输入30个字)