动态规划之最大子段和问题

原创 2016年05月31日 11:34:38

问题描述:

最大子段和问题是将一个n个整数的序列a[1],a[2]….a[n]中字段a[first]….a[last]之和,(1<=first<=last<=n)求这些子段和中最大的。
例如(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20,子段为a[2],a[3],a[4]。

求解方法:

如果不会算法,那就用时间复杂度为O(n^3)的枚举,i为从1到n的起点,j为从i到n的终点,k为从i到j的子段之和。
还是枚举,改进一下,得到O(n^2)的枚举算法,就是将k去掉,在找其终点j的时候就将子段和记录下来,因为从i到j的子段和就是从i到j-1的子段和加上a[j]。
再改进一下,将这个序列分成1到(1+n)/2的序列与(1+n)/2到n的序列。那么最大的子段有可能出现在:
1.左侧序列。2.右侧序列。3.跨越中间点的序列。
我们从中间点两侧找最大子段,再找越过中间点的最大子段,就形成了我们所说的分治算法,得到复杂度为O(nlogn)的算法。
其实,我们在选择一个元素a[j]的时候,只有两种情况,将a[i]至a[j-1]加上,或者从a[j]以j为起点开始。我们用一个数组dp[i]表示以i为结束的最大子段和,对于每一个a[i],加上dp[i-1]成为子段,或以a[i]开始成为新段的起点。因为我们只需要记录dp值,所以复杂度是O(n)。
这就是最大子段和的动态规划算法。
我们甚至不需要dp数组,只需要定义一个dp变量,因为最后要求的dp值也是最大的,所以我们可以在求dp的时候更新为最大的。

代码如下:

51nod1049 标准题

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

using namespace std;

int main()
{
    int n;
    long long a[50005];
    //long long dp[50005];
    while(scanf("%d",&n)!=-1)
    {
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
        }
        //memset(dp,0,sizeof(dp));
        long long  ans=0,dp=0;
        for (int i=0; i<n; i++)
        {
            if(dp>0)
                dp+=a[i];
            else
                dp=a[i];
            if(dp>ans)
                ans=dp;
        }
        cout<<ans<<endl;
    }
    return 0;
}

hdu 1003 要求起点和终点的最大子段和问题
采用dp数组寻找起点终点

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

using namespace std;

int main()
{
    int n;
    int T;
    long long a[100005];
    long long dp[100005];
    scanf("%d",&T);
    for(int t=1; t<=T; t++)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
        }
        memset(dp,0,sizeof(dp));
        dp[0]=a[0];
        for(int i=1; i<n; i++)
        {
            if (dp[i-1]>=0) dp[i]=dp[i-1]+a[i];
            else dp[i]=a[i];
        }
        int start=0,end=0,ans=a[0];
        for(int i=1; i<n; i++)
        {
            if (ans<dp[i])
            {
                ans=dp[i];
                end=i;
            }
        }
        start=end;
        for(int i=start-1; i>=0; i--)
        {
            if (dp[i]>=0) start=i;
            else break;
        }
        printf("Case %d:\n",t);
        printf("%d %d %d\n",ans,start+1,end+1);
        if (t<T) printf("\n");
    }
    return 0;
}

在找最优值的时候记录两个端点位置:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>

using namespace std;

const int maxn=110;
int a[maxn];
int n;

int maxsum(int n, int *a, int &left,int &right)
{
    int ret=0;
    int dp=0;
    int l=0,r=0;
    for(int i=0; i<n; i++)
    {
        if (dp>0) {dp+=a[i]; r++;}
        else {dp=a[i]; l=i; r=l;}
        if (dp>=ret)
        {
            ret=dp;
            left=l;
            right=r;
        }
    }
    return ret;
}

int main()
{
    while(scanf("%d",&n)!=-1)
    {
        for(int i=0; i<n; i++) scanf("%d",&a[i]);
        int left=-1,right=-1;//-1表示没有子段可以取
        int ans=maxsum(n,a,left,right);
        printf("最大子段和为%d 起始位置为%d 终止位置为%d\n",ans,left,right);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

最大子段和详解

最大子段和问题(Maximum Interval Sum) (有时也称LIS) 经典的动态规划问题,几乎所有的算法教材都会提到.本文将分析最大子段和问题的几种不同效率的解法,以及最大子段和问题...
  • Niteip
  • Niteip
  • 2012年04月10日 13:39
  • 10639

动态规划——最大子段和

最大字段和这是动态规划的经典问题,上一讲我们讲了一个简单的动态规划问题,这个最大子段和也不难,我们主要通过这几个简单的问题来了解一下动态规划。还有最大子段和用分治法也能做,等到日后我们在讲。 ...
  • jin_syuct
  • jin_syuct
  • 2015年10月24日 22:44
  • 1989

动态规划之最大子段和问题

问题描述:最大子段和问题是将一个n个整数的序列a[1],a[2]….a[n]中字段a[first]….a[last]之和,(1...
  • wuxuanyi27
  • wuxuanyi27
  • 2016年05月31日 11:34
  • 6025

最大子段和(分治与动态规划典例)

最大子段和   问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时...
  • ccDLlyy
  • ccDLlyy
  • 2016年08月18日 20:16
  • 3052

51Nod 1049 最大子段和(简单DP)

1049 最大子段和 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 N个整数组成的序列a[1],a[...
  • zwj1452267376
  • zwj1452267376
  • 2016年02月10日 15:55
  • 675

51Nod 1049 最大子段和

N个整数组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。 例如:-2,11,-4,13...
  • qingshui23
  • qingshui23
  • 2016年05月06日 20:36
  • 1044

最大子段和

动态规划是一个很巧妙的算法,但是能够想得到如何用动态规划,我感觉还是有难度的。不过慢慢来,先从小的动态规划的例子开始。 现在有一个数组,请找出这个数组的最大子段和。(即 max (a[i]+a[i+...
  • chaoyue1216
  • chaoyue1216
  • 2011年10月13日 15:59
  • 7001

C语言最大子段和问题(动态规划)

C语言最大子段和问题(动态规划)
  • little_hamster
  • little_hamster
  • 2016年11月14日 17:42
  • 989

最大子段和问题

最大子段和问题(Maximum Interval Sum) 经典的动态规划问题,几乎所有的算法教材都会提到.本文将分析最大子段和问题的几种不同效率的解法,以及最大子段和问题的扩展和运用. ...
  • jiyanfeng1
  • jiyanfeng1
  • 2012年10月11日 00:10
  • 3210

最大M子段和

描述 给定一个整数序列S1 ,S2 ,·,Sn (1 ≤ n ≤ 1,000,000,−32768 ≤ Si ≤32768),定义函数 sum(i,j) = Si + ...+ Sj (1 ≤ i ≤...
  • oanqoanq
  • oanqoanq
  • 2016年03月05日 12:59
  • 811
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划之最大子段和问题
举报原因:
原因补充:

(最多只允许输入30个字)