【第22期】观点:IT 行业加班,到底有没有价值?

动态规划之最大子段和问题

原创 2016年05月31日 11:34:38

问题描述:

最大子段和问题是将一个n个整数的序列a[1],a[2]….a[n]中字段a[first]….a[last]之和,(1<=first<=last<=n)求这些子段和中最大的。
例如(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20,子段为a[2],a[3],a[4]。

求解方法:

如果不会算法,那就用时间复杂度为O(n^3)的枚举,i为从1到n的起点,j为从i到n的终点,k为从i到j的子段之和。
还是枚举,改进一下,得到O(n^2)的枚举算法,就是将k去掉,在找其终点j的时候就将子段和记录下来,因为从i到j的子段和就是从i到j-1的子段和加上a[j]。
再改进一下,将这个序列分成1到(1+n)/2的序列与(1+n)/2到n的序列。那么最大的子段有可能出现在:
1.左侧序列。2.右侧序列。3.跨越中间点的序列。
我们从中间点两侧找最大子段,再找越过中间点的最大子段,就形成了我们所说的分治算法,得到复杂度为O(nlogn)的算法。
其实,我们在选择一个元素a[j]的时候,只有两种情况,将a[i]至a[j-1]加上,或者从a[j]以j为起点开始。我们用一个数组dp[i]表示以i为结束的最大子段和,对于每一个a[i],加上dp[i-1]成为子段,或以a[i]开始成为新段的起点。因为我们只需要记录dp值,所以复杂度是O(n)。
这就是最大子段和的动态规划算法。
我们甚至不需要dp数组,只需要定义一个dp变量,因为最后要求的dp值也是最大的,所以我们可以在求dp的时候更新为最大的。

代码如下:

51nod1049 标准题

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

using namespace std;

int main()
{
    int n;
    long long a[50005];
    //long long dp[50005];
    while(scanf("%d",&n)!=-1)
    {
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
        }
        //memset(dp,0,sizeof(dp));
        long long  ans=0,dp=0;
        for (int i=0; i<n; i++)
        {
            if(dp>0)
                dp+=a[i];
            else
                dp=a[i];
            if(dp>ans)
                ans=dp;
        }
        cout<<ans<<endl;
    }
    return 0;
}

hdu 1003 要求起点和终点的最大子段和问题
采用dp数组寻找起点终点

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

using namespace std;

int main()
{
    int n;
    int T;
    long long a[100005];
    long long dp[100005];
    scanf("%d",&T);
    for(int t=1; t<=T; t++)
    {
        scanf("%d",&n);
        for(int i=0; i<n; i++)
        {
            scanf("%lld",&a[i]);
        }
        memset(dp,0,sizeof(dp));
        dp[0]=a[0];
        for(int i=1; i<n; i++)
        {
            if (dp[i-1]>=0) dp[i]=dp[i-1]+a[i];
            else dp[i]=a[i];
        }
        int start=0,end=0,ans=a[0];
        for(int i=1; i<n; i++)
        {
            if (ans<dp[i])
            {
                ans=dp[i];
                end=i;
            }
        }
        start=end;
        for(int i=start-1; i>=0; i--)
        {
            if (dp[i]>=0) start=i;
            else break;
        }
        printf("Case %d:\n",t);
        printf("%d %d %d\n",ans,start+1,end+1);
        if (t<T) printf("\n");
    }
    return 0;
}

在找最优值的时候记录两个端点位置:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>

using namespace std;

const int maxn=110;
int a[maxn];
int n;

int maxsum(int n, int *a, int &left,int &right)
{
    int ret=0;
    int dp=0;
    int l=0,r=0;
    for(int i=0; i<n; i++)
    {
        if (dp>0) {dp+=a[i]; r++;}
        else {dp=a[i]; l=i; r=l;}
        if (dp>=ret)
        {
            ret=dp;
            left=l;
            right=r;
        }
    }
    return ret;
}

int main()
{
    while(scanf("%d",&n)!=-1)
    {
        for(int i=0; i<n; i++) scanf("%d",&a[i]);
        int left=-1,right=-1;//-1表示没有子段可以取
        int ans=maxsum(n,a,left,right);
        printf("最大子段和为%d 起始位置为%d 终止位置为%d\n",ans,left,right);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

0013算法笔记——【动态规划】最大子段和问题,最大子矩阵和问题,最大m子段和问题

1、最大子段和问题      问题定义:对于给定序列a1,a2,a3……an,寻找它的某个连续子段,使得其和最大。如( -2,11,-4,13,-5,-2 )最大子段是{ 11,-4,13 }其...

java动态规划最大子段和

import java.util.Scanner; public class tryfirst { public static void main(String[] args) { // T...

动态规划——最大子段和

最大字段和这是动态规划的经典问题,上一讲我们讲了一个简单的动态规划问题,这个最大子段和也不难,我们主要通过这几个简单的问题来了解一下动态规划。还有最大子段和用分治法也能做,等到日后我们在讲。 ...

动态规划求最大子段和

一、动态规划思想:动态规划通过多阶段决策解决问题,每一次的决策结果序列都必须进行存储。因此,可以说:“动态规划是高效率、高消费”的算法。动态规划就是分支算法的升级版,它的实质是:分支算法+解决子问题冗...

js算法:动态规划-最大公共子串与最大子段和

最大公共子串代码:         问题定义:比如输入两个字符串BDCABA和ABCBDAB的最长公共字符串有BD和AB,它们的长度都是2        动态规划思路:假设两个字符...

最大子段和(分治与动态规划典例)

最大子段和   问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时...

【动态规划】最大m子段和

给定n个数求这n个数划分成互不相交的m段的最大m子段和。   经典的动态规划优化的问题。设f(i, j)表示前i个数划分成j段,且包括第i个数的最大m子段和,那么有dp方程:     f(i, j...

动态规划--循环数组最大子段和

分析: (1)笨方法,我们可以用普通最大子段和的方法解决这个问题。我们从每个位置“断开”环,然后按普通的最大子段和的方法去做。这样做的复杂度是O(n^2)。 (2)巧妙点的方法,我们之所以要从某个...

(3)最大子段和问题____动态规划

最大子段和问题就是:  给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整均为负数时定义子段和为...

简陋的dp(蒟蒻dhl的日常)

最长公共子序列(LCS)ps:可以运用滚动数组进行空间上的优化 #include using namespace std; int f[2000][2000]; char str1[200...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)