POJ2553 The Bottom of a Graph 强连通 tarjan

原创 2011年10月30日 19:28:14

题意:此题最难的部分即是理解题意。

注意要求得点的定义为:所有这个点能到达的点都能到达这个点。

思路:

强连通,缩点,找出出度为0的强连通分量集合,就是要求得点集合。



#include<iostream>
#define min(a,b) (a<b?a:b)
using namespace std;
const int N=5005;
bool mat[N][N];
int dfn[N],low[N];
bool instack[N];
int indgr[N];
int outdgr[N];
int stack[N];
int sp;
int index;
int n,m;
int belong[N];
void tarjan(int i)
{
	dfn[i]=low[i]=index++;
	stack[sp++]=i;
	instack[i]=true;
	for(int j=1;j<=n;j++)
	{
		if(mat[i][j])
		{
			if(!dfn[j])
			{
				tarjan(j);
				low[i]=min(low[i],low[j]);
			}
			else if(instack[j])
			{
				low[i]=min(dfn[j],low[i]);
			}
		}
	}
	if(low[i]==dfn[i])
	{
		int j;
		do
		{
			j=stack[--sp];
			instack[j]=false;
			belong[j]=i;
		}while(j!=i);
	}
}
void solve()
{
	for(int i=1;i<=n;i++)
	{
		if(!dfn[i])
		{
			tarjan(i);
		}
	}
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
		{
			if(mat[i][j])
			{
				if(belong[i]!=belong[j])
				{
					indgr[belong[j]]++;
					outdgr[belong[i]]++;
				}
			}
		}
	for(int i=1;i<=n;i++)
	{
		if(outdgr[belong[i]]==0)
		{
			printf("%d ",i);
		}
	}
	printf("\n");
}
int main()
{
	while(scanf("%d%d",&n,&m),n!=0)
	{
		index=1;
		sp=1;
		memset(indgr,0,sizeof(indgr));
		memset(outdgr,0,sizeof(outdgr));
		memset(dfn,0,sizeof(dfn));
		memset(low,0,sizeof(low));
		memset(mat,0,sizeof(mat));
		memset(instack,0,sizeof(instack));
		memset(stack,0,sizeof(stack));
		memset(belong,0,sizeof(belong));
		int from,to;
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&from,&to);
			mat[from][to]=true;
		}
		solve();
	}
	return 0;
}


poj2553 The Bottom of a Graph【强连通】

题目链接:http://poj.org/problem?id=2553 题意:现在还不是很明白,总之是要找强连通分量出度为零的点,一开始我认为如果有多个这样的分量就无解,结果WA了,看了讨论,发现只...
  • Richie_ll
  • Richie_ll
  • 2017年07月24日 13:54
  • 137

poj2553 - The Bottom of a Graph

想看更多的解题报告:http://blog.csdn.net/wangjian8006/article/details/7870410                                ...
  • wangjian8006
  • wangjian8006
  • 2012年08月22日 10:50
  • 1620

poj2553 The Bottom of a Graph (Tarjan)

题意: 如果一个点v可以到达w,且w也一定可以到达v,则称v是一个sink。要求按顺序输出所有的sink。 思路: sink可以到达的点都可以到达sink,也就是说sink可以到达的所有点都与s...
  • u011265346
  • u011265346
  • 2015年01月21日 16:09
  • 330

POJ2553 The Bottom of a Graph (Tarjan)

题目链接:http://poj.org/problem?id=2553 题解:A node v in a graph G=(V,E) is called a sink, if for every ...
  • lezong2011
  • lezong2011
  • 2013年09月14日 12:23
  • 439

POJ2553————The Bottom of a Graph(tarjan算法)

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1...
  • say_c_box
  • say_c_box
  • 2016年11月24日 19:12
  • 210

poj2553 The Bottom of a Graph

bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}.列举G点中元素 做法:1.求scc2.统计scc中出度为0的点,列举即可 #include #include #include #...
  • u013514182
  • u013514182
  • 2015年01月01日 13:22
  • 151

POJ2553 The Bottom of a Graph

Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7461   Acc...
  • hysfwjr
  • hysfwjr
  • 2013年05月12日 14:51
  • 344

POJ2553——The Bottom of a Graph

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8...
  • Guard_Mine
  • Guard_Mine
  • 2014年10月03日 17:33
  • 530

poj2553——The Bottom of a Graph

这道题,题目对我来说,比较费解。好在大哥提醒之后,终于明白它想让我们干什么了!题意:       sink点的定义:如果点v到点w可达,那么点w到点v也是可达,如果对于图中每个顶点w均成立,则v点称为...
  • k1246195917
  • k1246195917
  • 2010年09月20日 01:26
  • 376

ZOJ1979 POJ2553 The Bottom of a Graph,经典Tarjan

经典的强连通分量题,我用了Tarjan算法+缩点。把每个强连通分量缩点,求出每个点的出度。所谓的bottom,就是那些出度为0的强连通分量,对于所有出度不为零的连通分量里的点,都可以到达bottom中...
  • neofung
  • neofung
  • 2011年09月25日 01:51
  • 521
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ2553 The Bottom of a Graph 强连通 tarjan
举报原因:
原因补充:

(最多只允许输入30个字)