web基的决策树

原创 2006年06月17日 04:44:00
最近作的项目需要一个web基的决策树,开始还有点担心能否作得出来,后来还是做出来了,还超过了原先的预计,
对自己的能力有了新的认识。

这个决策树的主要作用在于让用户能够建立任意规则的逻辑处理,比如:

某员工的工资比他三年前的工资高20%并且某员工比王五高2个等级

等等这样的规则,然后用这样的规则去过滤用户输入的数据。


做完之后,发现它像一个微型的编译器,还发现在界面和校验上花的时间比后端的真正处理花的时间几乎多了一倍。

由此可见界面实际上是个劳动力密集型的任务。就算这样,界面 在我看来仍然差强人意,尽管我已经在我能够改的
地方做了很多优化。

迫不得已,用了一点ajax。

相关文章推荐

决策树算法

  • 2017年11月21日 19:26
  • 382KB
  • 下载

决策树分类算法与应用.docx

  • 2017年11月14日 21:22
  • 163KB
  • 下载

基于决策树系列算法(ID3, C4.5, CART, Random Forest, GBDT)的分类和回归探讨

现在的r或者spark集成的机器学习包里面,基于决策树的算法都分回归或者分类。而实际这些回归可能和我们平常的理解存在一些偏差,因此写下此文一起探讨! 决策树常见算法有以下几种: ID3算法主要...

决策树学习

  • 2015年03月02日 15:16
  • 238KB
  • 下载

决策树算法

  • 2014年12月17日 13:21
  • 395KB
  • 下载

机器学习方法(四):决策树Decision Tree原理与实现技巧

前面三篇写了线性回归,lasso,和LARS的一些内容,这篇写一下决策树这个经典的分类算法,后面再提一提随机森林。关于决策树的内容主要来自于网络上几个技术博客,本文中借用的地方我都会写清楚出处,写这篇...

决策树联系数据源

  • 2017年02月24日 16:45
  • 423B
  • 下载

决策树、随机森林简单原理和实现

本文申明:此文为学习记录过程,中间多处引用大师讲义和内容 一:概念 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有...

决策树算法

  • 2015年10月29日 16:29
  • 336B
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:web基的决策树
举报原因:
原因补充:

(最多只允许输入30个字)