解题笔记(1)——子数组之和的最大值

本文探讨了求解一维数组中子数组之和最大值的经典问题,介绍了四种方法,包括穷举法、分治法以及动态规划的最优解,详细解析了动态规划的思路。同时,对于二维数组的情况,提出了一种利用辅助数组的解决方案,时间复杂度为O(n2)。博客探讨了算法优化,并强调了版权声明。
摘要由CSDN通过智能技术生成

         求子数组之和的最大值是一个很经典的问题。问题的描述如下:一个有N个整形数的一维数组(A[0], A[1], ... A[n-1]),这个数组有很多子数组,那么子数组之和的最大值是什么呢?

         这个问题的解答其实在《编程珠玑》一书有的。一共是4中方法:第一种是穷举法,计算所有可能子数组的和,时间复杂度为O(n3)。第二种其实也是穷举法。代码如下:

for(i = 0;i < n;i++)
{
	sum = 0;
	for(j = i;j < n;j++)
	{
		sum += A[j];
		if(sum > maxsum)
			maxsum = sum;
	}
}

         很明显复杂度为O(n2)。第三种方法是分治法,将数组元素均分成两部分,那么最大子数组和只有三种情况。在左边部分,右边部分,以及跨越了边界部分。这种方法是时间复杂度为O(nlogn)。不是最优的就不列代码了。第四种是最优的,时间复杂度为O(n),利用了动态规划的思想。具体代码如下:

int MaxSubSum1(int *A,int n)
{
	int start, all;
	all = start =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值