最简Linux驱动

原创 2016年08月13日 21:28:34

一、实验目的:编写Linux最简驱动


二、实验平台

迅为itop4412开发板(开发板运行Linux最小系统)


三、实验流程:

(1)了解最简驱动:包含头文件;模块信息声明;模块驱动的入口、出口;功能实现四个部分。

Linux头文件:它们是在Linux源码目录下的:include/linux/
信息声明:所有的Linux 代码必须遵循GPL 协议,如果不声明GPL 协议,模块将无法在Linux 中使用。
– MODULE_LICENSE(_license)添加遵循GPL协议,必选!
– MODULE_AUTHOR(_author)代码作者,可选!

– 入口函数module_init(x)
– 出口函数module_exit(x)


(2)实现代码:
    /*包含初始化宏定义的头文件,代码中的module_init和module_exit在此文件中*/
    #include <linux/init.h>
    /*包含初始化加载模块的头文件,代码中的MODULE_LICENSE在此头文件中*/
    #include <linux/module.h>

    /*初始化*/
    static int __init hello_init(void)
    {
        printk(KERN_EMERG "HELLO WORLD enter!\n");
        return 0;
    }

    /*退出*/
    static void __exit hello_exit(void)
    {
        printk(KERN_EMERG "HELLO WORLD exit!\n");

    }
    /*入口*/
    module_init(hello_init);
    /*出口*/
    module_exit(hello_exit);

    /*声明*/
    MODULE_LICENSE("Dual BSD/GPL");/*遵循的协议;必须的*/
    MODULE_AUTHOR("star sky");
    MODULE_DESCRIPTION("Linux the simplest driver");
    MODULE_VERSION("V1.0");

(3)Makefile

单独编译模块的话,需要我们写一个Makefile文件,正如迅为的教程说的一样,我们学会仿写即可。

    #!/bin/bash
    #通知编译器我们要编译模块的哪些源码
    #这里是编译itop4412_hello.c这个文件编译成中间文件itop4412_hello.o
    obj-m += mini_linux_module.o 

    #源码目录变量,这里用户需要根据实际情况选择路径
    #作者是将Linux的源码拷贝到目录/home/topeet/android4.0下并解压的
    KDIR := /home/topeet/android4.0/iTop4412_Kernel_3.0

    #当前目录变量
    PWD ?= $(shell pwd)

    #make命名默认寻找第一个目标
    #make -C就是指调用执行的路径
    #$(KDIR)Linux源码目录,作者这里指的是/home/topeet/android4.0/iTop4412_Kernel_3.0
    #$(PWD)当前目录变量
    #modules要执行的操作
    all:
        make -C $(KDIR) M=$(PWD) modules

    #make clean执行的操作是删除后缀为o的文件
    clean:
        rm -rf *.o

(4)编译

流程分析:
这里写图片描述

    我们将最简驱动和Makefile文件拷贝到ubuntu下,注意放到一个文件夹,然后make,成功编译后,文件夹下就有驱动模块:.ko文件。这样最简驱动就完成了。

(5)测试

    使用U盘或者TF卡,当然也可以使用更方便的tftp下载或者NFS系统方式,将.ko文件拷贝到开发板上.加载命令为:insmod ;查看命令:lsnod ;卸载命令:rmmod.
    加载:insmod XXX.ko
可在终端看到:HELLO WORLD enter!
    卸载:
可在终端看到:HELLO WORLD exit!
这样最简驱动编写就完成了!!

四、感谢:

此次实验参照迅为驱动教程进行操作。
版权声明:原创文章转载请注明出处。 举报

相关文章推荐

返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)