关闭

质因数分解定理

标签: acmc++
970人阅读 评论(0) 收藏 举报
分类:
概况算术基本定理:“每一个大于1的整数都能分解成质因数乘积的形式,并且如果把质因数按照由小到大的顺序排列在一起,相同的因数的积写成幂的形式,那么这种分解方法是唯一的。”——又称为“质因数分解定理”,强调整数分解连乘积的形式;又称为“唯一分解定理(自然数),强调自然数分解唯一的性质。]
附:
一个数N(>1)质因分解,有且只有一个因子大于等于sqrt(N)——开根号。

题目1207:质因数的个数

时间限制:1 秒

内存限制:32 兆

特殊判题:

提交:2537

解决:694

题目描述:
求正整数N(N>1)的质因数的个数。
相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。
输入:

可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。

输出:

对于每组数据,输出N的质因数的个数。

样例输入:
120
样例输出:
5
提示:

注意:1不是N的质因数;若N为质数,N是N的质因数。


解说:一个大于1的数其素数分解形式是唯一的。 而且在求概数素数个数的时候,不必考虑合数。假设素数a和素数b的乘积为c,则在用试除法求个数时一定会在遇到c之前遇到a和b,因此不必担心合数影响,直接用试除法就可以得到该数质因数的个数。



源代码:


#include<cstdio>
#include<cmath>
using namespace std;
 
int main()
{
    int n,m,i;
    while(scanf("%d",&n)!=EOF)
    {
         m=0;
         for(i=2;i<sqrt(1.0*n)+1;++i)
              while(n%i==0)
              {
                   ++m;
                   n/=i;
              }
         if(n>1)++m;
         printf("%d\n",m);
    }
    return 0;
}
/**************************************************************
    Problem: 1207
    User: 3011216016
    Language: C++
    Result: Accepted
    Time:10 ms
    Memory:1032 kb
****************************************************************/



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:162419次
    • 积分:3425
    • 等级:
    • 排名:第10174名
    • 原创:177篇
    • 转载:24篇
    • 译文:2篇
    • 评论:19条
    文章分类
    最新评论