关闭

斯特林公式

237人阅读 评论(0) 收藏 举报
分类:

斯特林[striling]公式(求阶乘(n!)的位数)

斯特林公式是一条用来取n阶乘近似值的数学公式,由公式
可得n!的位数为0.5*log10(2*pi)+(m+0.5)*log10(m)-m*log10(e)+1;
另外还有一个计算方法,n!=1*2*3*...*n;

所以log10(n!)=log10(1*2*3*...*n);
即log10(n!)=log10(1)+log10(2)+log10(3)+...+log10(n);
n!的位数为log10(n!)+1。

/*例如1000阶乘位数:
log10(1)+log10(2)+···+log10(1000)取整后加1
*/
#include
<stdio.h>

#include<math.h>


int main()
{
int n,i,t;
double d;
scanf(
"%d",&t);
while(t--)
{
while(scanf("%d",&n))
{
d
=0;
for(i=1;i<=n;i++)
d
+=log10(i);
printf(
"%d\n",(int) d+1);
}
}
return 0;
}
/*


#include<stdio.h>
#include<math.h>
#define PI 3.14159265
int main(){
int len,N;
while(scanf("%d",&N)!=EOF)
{
if(N==1)
len=1;
else
len=(int)ceil((N*log(N)-N+log(2*N*PI)/2)/log(10));////ceil求上界,即不小于某值的最小整数
//string公式lnN!=NlnN-N +0.5*ln( 2*N*pi)
//而N次方阶乘的位数等于:
//log10(N!)取整后加1
//log10(N!)=lnN!/ln(10)

//ceil为求上界,即不小n的最小整数
//log取自然对数
printf("%d\n",len);
}
return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15165次
    • 积分:318
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类