LeetCode: Median of Two Sorted Arrays

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n))

class Solution {
public:
    double findMedianSortedArrays(int A[], int m, int B[], int n) {
        if((m+n) % 2 == 0)
            return (helper(A, m, B, n, (m+n)/2) + helper(A, m, B, n, (m+n)/2 - 1)) / 2.0;
        else
            return helper(A, m, B, n, (m+n)/2);
        
    }
private:
    int helper(int A[], int m, int B[], int n, int k)
    {
        if(m == 0)
        {
            return B[k]; 
        }
        if(n == 0)
            return A[k];
        if(k == 0)
            return std::min(A[0], B[0]);
        if(m/2 + n/2 > k)
        {
            if(A[m/2] >= B[n/2])
            {
                return helper(A, m/2, B, n, k);
            }
            else
            {
                return helper(A, m, B, n/2, k);
            }
        }
        else
        {
            if(A[m/2] >= B[n/2])
            {
                return helper(A, m, B+(n/2), (n+1)/2 - 1, k-(n+1 - (n+1)/2));
            }
            else
            {
                return helper(A + m/2, (m+1)/2 - 1, B, n, k-(m+1 - (m+1)/2));
            }
        }
    }
    
};

Round 2:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size()-1;
        int n = nums2.size()-1;
        int k = (m + n + 2)/2;
        if((m + n) % 2 == 0)
        {
            return ((getMedian(0, m, 0, n, nums1, nums2, k) + getMedian(0, m, 0, n, nums1, nums2, k-1)) / 2.0f);
        }
        else
        {
            return getMedian(0, m, 0, n, nums1, nums2, k);
        }
        
    }
private:
    double getMedian(int s1, int e1, int s2, int e2, vector<int> &nums1, vector<int> &nums2, int k)
    {
        if(s1 > e1)
            return nums2[s2 + k];
        if(s2 > e2)
            return nums1[s1 + k];
        if(k == 0)
            return std::min(nums1[s1], nums2[s2]);
        int m = e1 - s1 + 1;
        int n = e2 - s2 + 1;
        if(k == m/2 + n/2 && nums1[s1 + m/2] == nums2[s2 + n/2])
        {
            return nums1[s1 + m/2];
        }
        if(m/2 + n/2 >= k)
        {
            if(nums1[s1 + m/2] > nums2[s2 + n/2])
            {
                return getMedian(s1, s1 + m/2 - 1, s2, e2, nums1, nums2, k);
            }
            else
            {
                return getMedian(s1, e1, s2, s2 + n/2 - 1, nums1, nums2, k);
            }
        }
        else
        {
            if(nums1[s1 + m/2] > nums2[s2 + n/2])
            {
                return getMedian(s1, e1, s2 + n/2 + 1, e2, nums1, nums2, k - n/2 - 1);
            }
            else
            {
                return getMedian(s1 + m/2 + 1, e1, s2, e2, nums1, nums2, k - m/2 - 1);
            }
        }
    }
};


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
提供的源码资源涵盖了python应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值