数据结构:位图法

转载 2016年06月01日 14:06:14
已移到:http://www.iteblog.com/archives/148

一、定义

       位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。在STL中有一个bitset容器,其实就是位图法,引用bitset介绍:
A bitset is a special container class that is designed to store bits (elements with only two possible values: 0 or 1,true or false, ...).The class is very similar to a regular array, but optimizing for space allocation: each element occupies only one bit (which is eight times less than the smallest elemental type in C++: char).Each element (each bit) can be accessed individually: for example, for a given bitset named mybitset, the expression mybitset[3] accesses its fourth bit, just like a regular array accesses its elements.

二、数据结构

unsigned int bit[N];
在这个数组里面,可以存储 N * sizeof(int) * 8个数据,但是最大的数只能是N * sizeof(int)  * 8 - 1。假如,我们要存储的数据范围为0-15,则我们只需要使得N=1,这样就可以把数据存进去。如下图:

数据为【5,1,7,15,0,4,6,10】,则存入这个结构中的情况为

三、相关操作

1,写入数据

定义一个数组: unsigned char bit[8 * 1024];这样做,能存 8K*8=64K 个 unsigned short 数据。bit 存放的字节位置和位位置(字节 0~8191 ,位 0~7 )

比如写 1234 ,字节序: 1234/8 = 154; 位序: 1234 &0b111 = 2 ,那么 1234 放在 bit 的下标 154 字节处,把该字节的 2 号位( 0~7)置为 1

字节位置: int nBytePos =1234/8 = 154;

位位置:   int nBitPos = 1234 & 7 = 2;

  1. // 把数组的 154 字节的 2 位置为 1  
  2. unsigned short val = 1<<nBitPos;  
  3. bit[nBytePos] = bit[nBytePos] |val;  // 写入 1234 得到arrBit[154]=0b00000100  

  再比如写入 1236 ,

字节位置: int nBytePos =1236/8 = 154;

位位置:   int nBitPos = 1236 & 7 = 4

  1. // / 把数组的 154 字节的 4 位置为 1  
  2. val = 1<<nBitPos;  
  3. arrBit[nBytePos] = arrBit[nBytePos] |val;  // 再写入 1236 得到arrBit[154]=0b00010100  
函数实现:
  1. #define SHIFT 5    
  2. #define MAXLINE 32    
  3. #define MASK 0x1F    
  4. void setbit(int *bitmap, int i){    
  5.     bitmap[i >> SHIFT] |= (1 << (i & MASK));    
  6. }  

2,读指定位

  1. bool getbit(int *bitmap1, int i){    
  2.     return bitmap1[i >> SHIFT] & (1 << (i & MASK));    
  3. }   

四、位图法的缺点

  1. 可读性差
  2. 位图存储的元素个数虽然比一般做法多,但是存储的元素大小受限于存储空间的大小。位图存储性质:存储的元素个数等于元素的最大值。比如, 1K 字节内存,能存储 8K 个值大小上限为 8K 的元素。(元素值上限为 8K ,这个局限性很大!)比如,要存储值为 65535 的数,就必须要 65535/8=8K 字节的内存。要就导致了位图法根本不适合存 unsigned int 类型的数(大约需要 2^32/8=5 亿字节的内存)。
  3. 位图对有符号类型数据的存储,需要 2 位来表示一个有符号元素。这会让位图能存储的元素个数,元素值大小上限减半。 比如 8K 字节内存空间存储 short 类型数据只能存 8K*4=32K 个,元素值大小范围为 -32K~32K 。

五、位图法的应用

  1、给40亿个不重复的unsigned int的整数,没排过序的,然后再给一个数,如何快速判断这个数是否在那40亿个数当中
  首先,将这40亿个数字存储到bitmap中,然后对于给出的数,判断是否在bitmap中即可。
2、使用位图法判断整形数组是否存在重复
      遍历数组,一个一个放入bitmap,并且检查其是否在bitmap中出现过,如果没出现放入,否则即为重复的元素。
       3、使用位图法进行整形数组排序
      首先遍历数组,得到数组的最大最小值,然后根据这个最大最小值来缩小bitmap的范围。这里需要注意对于int的负数,都要转化为unsigned int来处理,而且取位的时候,数字要减去最小值。
       4、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数
      参考的一个方法是:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)。其实,这里可以使用两个普 通的Bitmap,即第一个Bitmap存储的是整数是否出现,如果再次出现,则在第二个Bitmap中设置即可。这样的话,就可以使用简单的1- Bitmap了。

相关文章推荐

数据结构:位图法(bitmap||BMP)

一、定义        位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。在STL中有一个bi...

海量数据去重排序--bitmap(位图法)在java中的实现的两种方法

在海量数据中查找出重复出现的元素或者去除重复出现的元素是面试中常考的文图。针对此类问题,可以使用位图法来解决。例如:已知某个文件内包含若干个电话号码,要求统计不同的号码的个数,甚至在O(n)时间复杂度...
  • y999666
  • y999666
  • 2016年04月22日 15:48
  • 3750

海量数据处理---位图法Bitmap

方法介绍 什么是Bit-map 所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节...

海量数据处理——位图法bitmap

一、定义        位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。在STL中有一个b...

位图法处理海量数据常见使用

位图法处理海量数据常见使用

数据结构:位图法

一、定义        位图法就是bitmap的缩写。所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的。在STL中有一个b...

数组中寻找第K小的数----位图法(bitmap)

(1)位图法      所谓bitmap,就是用每一位来存放某种状态,适用于大规模数据,但数据状态又不是很多的情况。通常是用来判断某个数据存不存在的(百度百科)。       例如:对{0, 1,...

位图法JAVA

位图法 bit-map(位图)法基本原理是使用位数字来表示某些元素是否存在,如8位电话号码中查重复号码,它适用于海量数据的快速查找、判重、删除等。 具体而言,位图是一个N位长的串,我们可用int[...
  • qfzxhy
  • qfzxhy
  • 2017年02月09日 18:26
  • 708
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据结构:位图法
举报原因:
原因补充:

(最多只允许输入30个字)