hdu 2586 How far away ? lca 在线和离线算法

原创 2016年06月01日 14:30:17

题意:给出一棵n个节点的树,m次询问,找出u和v的距离


思路:每次对u和v找到他们的lca,并且设定一个数据结构,dis[i]表示i到根的距离,那么u和v的距离等于:dp[u] + dp[v] - 2 * dp[lca]

 给出在线和离线两种方法


题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586


tarjan离线算法:


#include <cstdio>
#include <cstring>
#include <algorithm>

#pragma warning (disable: 4996)

using namespace std;

const int maxn = 40005;
const int maxm = 205;


struct edge
{
    int u, v, w, next;
}e[maxn];
int head[maxn], cnt;

struct quiry
{
    int u, v, num, next;
}q[maxm << 1];
int head1[maxn], cnt1;

int n, m;
int p[maxn];
int dis[maxn];
bool in[maxn];
bool vis[maxn];
int root;
int lca[maxm];

int Find(int x)
{
    return p[x] == x ? p[x] : p[x] = Find(p[x]);
}

void Union(int x, int y)
{
    int dx = Find(x);
    int dy = Find(y);
    if (dx != dy)
        p[dx] = dy;
}

void init()
{
    cnt = 0;
    cnt1 = 0;
    memset(dis, 0, sizeof(dis));
    memset(in, false, sizeof(in));
    memset(head, -1, sizeof(head));
    memset(vis, false, sizeof(vis));
    memset(head1, -1, sizeof(head1));
    for (int i = 1; i <= n; i++)
        p[i] = i;
}

void addedge(int u, int v, int w)
{
    e[cnt].u = u, e[cnt].v = v, e[cnt].w = w, e[cnt].next = head[u], head[u] = cnt++;
}

void addquery(int u, int v, int num)
{
    q[cnt1].u = u, q[cnt1].v = v, q[cnt1].num = num, q[cnt1].next = head1[u], head1[u] = cnt1++;
}

void tarjan(int u)
{
    vis[u] = true;
    int v;
    for (int i = head1[u]; i != -1; i = q[i].next)
    {
        v = q[i].v;
        if (vis[v])
        {
            lca[q[i].num] = Find(v);
        }
    }
    for (int i = head[u]; i != -1; i = e[i].next)
    {
        v = e[i].v;
        if (!vis[v]) 
        {
            dis[v] = dis[u] + e[i].w;
            tarjan(v);
            p[v] = u;
        }
    }
}

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &n, &m);
        init();
        int u, v, w, c;
        for (int i = 0; i < n - 1; i++)
        {
            scanf("%d%d%d", &u, &v, &w);
            addedge(u, v, w);
            in[v] = true;
        }
        for (int i = 0; i < m; i++)
        {
            scanf("%d%d", &u, &v);
            addquery(u, v, i);
            addquery(v, u, i);
        }
        for (int i = 1; i <= n; i++)
        {
            if (!in[i])
            {
                root = i;
                break;
            }
        }
        tarjan(root);
        for (int i = 0; i < m * 2; i += 2)
        {
            u = q[i].u, v = q[i].v, c = q[i].num;
            printf("%d\n", dis[u] + dis[v] - 2 * dis[lca[c]]);
        }
    }
    return 0;
}


在线算法

#include <cstdio>
#include <cstring>
#include <algorithm>

#pragma warning (disable: 4996)

using namespace std;

const int maxn = 40005;
const int maxm = 205;

struct edge
{
	int u, v, w, next;
}e[maxn];
int head[maxn], cnt;
int n, m;
bool in[maxn];
int root;
int vs[maxn << 1];
int dep[maxn << 1];
int id[maxn];
int dp[maxn << 1][20]; //注意这里要乘2
int dis[maxn];

void init()
{
	cnt = 0;
	memset(dis, 0, sizeof(dis));
	memset(in, false, sizeof(in));
	memset(head, -1, sizeof(head));
}

void addedge(int u, int v, int w)
{
	e[cnt].u = u, e[cnt].v = v, e[cnt].w = w, e[cnt].next = head[u], head[u] = cnt++;
}

void dfs(int u, int fa, int d, int &k)
{
	id[u] = k;
	vs[k] = u;
	dep[k++] = d;
	int v;
	for (int i = head[u]; i != -1; i = e[i].next)
	{
		v = e[i].v;
		if (v != fa)
		{
			dis[v] = dis[u] + e[i].w;
			dfs(v, u, d + 1, k);
			vs[k] = u;
			dep[k++] = d;
		}
	}
}

int Min(int x, int y)
{
	return dep[x] <= dep[y] ? x : y;
}

int rmq(int l, int r)
{
	int k = 0;
	while ((1 << (k + 1)) <= r - l + 1) k++;
	return Min(dp[l][k], dp[r - (1 << k) + 1][k]);
}

void rmq_init(int n)
{
	for (int i = 1; i <= n; i++)
		dp[i][0] = i;
	for (int j = 1; (1 << j) <= n; j++)
	{
		for (int i = 1; i + (1 << j) - 1 < n; i++)
			dp[i][j] = Min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
	}
}

void build()
{
	for (int i = 1; i <= n; i++)
	{
		if (!in[i])
		{
			root = i;
			break;
		}
	}
	int k = 0;
	dfs(root, -1, 0, k);
	rmq_init(n * 2);
}

int lca(int u, int v)
{
	int l, r;
	l = min(id[u], id[v]);
	r = max(id[u], id[v]);
	int res = rmq(l, r);
	return vs[res];
}

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		init();
		scanf("%d%d", &n, &m);
		for (int i = 0; i < n - 1; i++)
		{
			int u, v, w;
			scanf("%d%d%d", &u, &v, &w);
			addedge(u, v, w);
			in[v] = true;
		}
		build();	
		for (int i = 0; i < m; i++)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			int a = lca(u, v);
			printf("%d\n", dis[u] + dis[v] - 2 * dis[a]);
		}
	}
	return 0;
}


版权声明:转载务必请标明出处,谢谢 举报

相关文章推荐

hdu 2586 How far away ? LCA离线算法

题目链接 题意:给出n个点,n-1条边,保证每两个点之间的路径唯一,回答m个距离询问。 LCA离线算法 tarjan模板。 #include #include #include #includ...

hdu 2586 How far away ? lca 在线和离线算法

题意:给出一棵n个节点的树,m次询问,找出u和v的距离 思路:每次对u和v找到他们的lca,并且设定一个数据机构,dis[i]表示i到根的距离,那么u和v的距离等于:dp[u] + dp[v] -...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

HDU 2586 How far away ?(Tarjan离线算法)

Tarjan离线算法不得不说的那些事儿

hdoj 2586 How far away ? 【Tarjan离线LCA】

题目:hdoj 2586 How far away ? 题意:给出一个有权树,求任意两点的之间的距离。 分析:思想就是以一个点 root 作为跟变成有根数,然后深搜处理处所有点到跟...

hdu-2586 How far away ?(LCA)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2586 (包括2016级新生)除了校赛,还有什么途径可以申请加入ACM校队? ...

hdu 2586 How far away ?(LCA)

hdu 2586 How far away ? 根节点

HDU 2586 How far away ?(LCA)

该题是一道比较基础的LCA(最近公共祖先),也就是快速求出树上任意两个点的最近公共祖先, 然后顺便维护边权值(每个结点到root的距离),就可以快速求出任意两个结点的距离了。 细节参见代码: #i...

HDU 2586 How far away ?LCA Tarjan

How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T...

How far away? - HDU 2586 - LCA

链接:  http://acm.hdu.edu.cn/showproblem.php?pid=2586题目:Problem Description There are n houses in the...

HDU---2586-How far away(LCA)

How far away ?Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB  ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)