hdu 2586 How far away ? lca 在线和离线算法

原创 2016年06月01日 14:30:17

题意:给出一棵n个节点的树,m次询问,找出u和v的距离


思路:每次对u和v找到他们的lca,并且设定一个数据结构,dis[i]表示i到根的距离,那么u和v的距离等于:dp[u] + dp[v] - 2 * dp[lca]

 给出在线和离线两种方法


题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586


tarjan离线算法:


#include <cstdio>
#include <cstring>
#include <algorithm>

#pragma warning (disable: 4996)

using namespace std;

const int maxn = 40005;
const int maxm = 205;


struct edge
{
    int u, v, w, next;
}e[maxn];
int head[maxn], cnt;

struct quiry
{
    int u, v, num, next;
}q[maxm << 1];
int head1[maxn], cnt1;

int n, m;
int p[maxn];
int dis[maxn];
bool in[maxn];
bool vis[maxn];
int root;
int lca[maxm];

int Find(int x)
{
    return p[x] == x ? p[x] : p[x] = Find(p[x]);
}

void Union(int x, int y)
{
    int dx = Find(x);
    int dy = Find(y);
    if (dx != dy)
        p[dx] = dy;
}

void init()
{
    cnt = 0;
    cnt1 = 0;
    memset(dis, 0, sizeof(dis));
    memset(in, false, sizeof(in));
    memset(head, -1, sizeof(head));
    memset(vis, false, sizeof(vis));
    memset(head1, -1, sizeof(head1));
    for (int i = 1; i <= n; i++)
        p[i] = i;
}

void addedge(int u, int v, int w)
{
    e[cnt].u = u, e[cnt].v = v, e[cnt].w = w, e[cnt].next = head[u], head[u] = cnt++;
}

void addquery(int u, int v, int num)
{
    q[cnt1].u = u, q[cnt1].v = v, q[cnt1].num = num, q[cnt1].next = head1[u], head1[u] = cnt1++;
}

void tarjan(int u)
{
    vis[u] = true;
    int v;
    for (int i = head1[u]; i != -1; i = q[i].next)
    {
        v = q[i].v;
        if (vis[v])
        {
            lca[q[i].num] = Find(v);
        }
    }
    for (int i = head[u]; i != -1; i = e[i].next)
    {
        v = e[i].v;
        if (!vis[v]) 
        {
            dis[v] = dis[u] + e[i].w;
            tarjan(v);
            p[v] = u;
        }
    }
}

int main()
{
    int t;
    scanf("%d", &t);
    while (t--)
    {
        scanf("%d%d", &n, &m);
        init();
        int u, v, w, c;
        for (int i = 0; i < n - 1; i++)
        {
            scanf("%d%d%d", &u, &v, &w);
            addedge(u, v, w);
            in[v] = true;
        }
        for (int i = 0; i < m; i++)
        {
            scanf("%d%d", &u, &v);
            addquery(u, v, i);
            addquery(v, u, i);
        }
        for (int i = 1; i <= n; i++)
        {
            if (!in[i])
            {
                root = i;
                break;
            }
        }
        tarjan(root);
        for (int i = 0; i < m * 2; i += 2)
        {
            u = q[i].u, v = q[i].v, c = q[i].num;
            printf("%d\n", dis[u] + dis[v] - 2 * dis[lca[c]]);
        }
    }
    return 0;
}


在线算法

#include <cstdio>
#include <cstring>
#include <algorithm>

#pragma warning (disable: 4996)

using namespace std;

const int maxn = 40005;
const int maxm = 205;

struct edge
{
	int u, v, w, next;
}e[maxn];
int head[maxn], cnt;
int n, m;
bool in[maxn];
int root;
int vs[maxn << 1];
int dep[maxn << 1];
int id[maxn];
int dp[maxn << 1][20]; //注意这里要乘2
int dis[maxn];

void init()
{
	cnt = 0;
	memset(dis, 0, sizeof(dis));
	memset(in, false, sizeof(in));
	memset(head, -1, sizeof(head));
}

void addedge(int u, int v, int w)
{
	e[cnt].u = u, e[cnt].v = v, e[cnt].w = w, e[cnt].next = head[u], head[u] = cnt++;
}

void dfs(int u, int fa, int d, int &k)
{
	id[u] = k;
	vs[k] = u;
	dep[k++] = d;
	int v;
	for (int i = head[u]; i != -1; i = e[i].next)
	{
		v = e[i].v;
		if (v != fa)
		{
			dis[v] = dis[u] + e[i].w;
			dfs(v, u, d + 1, k);
			vs[k] = u;
			dep[k++] = d;
		}
	}
}

int Min(int x, int y)
{
	return dep[x] <= dep[y] ? x : y;
}

int rmq(int l, int r)
{
	int k = 0;
	while ((1 << (k + 1)) <= r - l + 1) k++;
	return Min(dp[l][k], dp[r - (1 << k) + 1][k]);
}

void rmq_init(int n)
{
	for (int i = 1; i <= n; i++)
		dp[i][0] = i;
	for (int j = 1; (1 << j) <= n; j++)
	{
		for (int i = 1; i + (1 << j) - 1 < n; i++)
			dp[i][j] = Min(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
	}
}

void build()
{
	for (int i = 1; i <= n; i++)
	{
		if (!in[i])
		{
			root = i;
			break;
		}
	}
	int k = 0;
	dfs(root, -1, 0, k);
	rmq_init(n * 2);
}

int lca(int u, int v)
{
	int l, r;
	l = min(id[u], id[v]);
	r = max(id[u], id[v]);
	int res = rmq(l, r);
	return vs[res];
}

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		init();
		scanf("%d%d", &n, &m);
		for (int i = 0; i < n - 1; i++)
		{
			int u, v, w;
			scanf("%d%d%d", &u, &v, &w);
			addedge(u, v, w);
			in[v] = true;
		}
		build();	
		for (int i = 0; i < m; i++)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			int a = lca(u, v);
			printf("%d\n", dis[u] + dis[v] - 2 * dis[a]);
		}
	}
	return 0;
}


版权声明:转载务必请标明出处,谢谢

HDU 2586 How far away?(LCA使用详解)

LCA、并查集、动态规划、深度优先搜索、哈希、RMQ、递归
  • nameofcsdn
  • nameofcsdn
  • 2016年08月17日 15:56
  • 2622

HDU-2586-How far away ?(倍增求LCA模板)

题目链接:HDU-2586-How far away ?倍增求LCA: 1.先转化成有根树。 2.dfs求出每个点的深度 3.初始化anc数组 4.倍增查询#include using nam...
  • jinglinxiao
  • jinglinxiao
  • 2017年03月28日 18:33
  • 182

hdu2586 How far away? LCA

hdu2586 #include #include #include #include using namespace std; #define MAX 40000 struct edge...
  • dellaserss
  • dellaserss
  • 2012年12月03日 11:35
  • 1424

hdu2586How far away ?

用tarjan解hdu2586,稍微谈了这个算法的实现,欢迎讨论
  • chaoweilanmao
  • chaoweilanmao
  • 2014年07月12日 12:13
  • 1006

HDU 2586 How far away LCA 倍增法

倍增法求lca,关键就是在于预处理。 如果说题的数据太水,有时候暴力反而更快…… (此题倍增法我用了78ms,当年暴力62ms...)...
  • cjj490168650
  • cjj490168650
  • 2016年07月18日 19:37
  • 202

倍增法LCA hdu2586 How far away ?

传送门:点击打开链接 题意:给你一棵树,每条边有权值,求两点之间的最短距离 思路:裸LCA。这里主要练习一下倍增法,感觉这种思路和代码实现很简单,而且能感觉实用性很大的,很值得学习 倍增法要理解...
  • qwb492859377
  • qwb492859377
  • 2015年12月08日 20:46
  • 1019

hdoj 2586 How far away ? 【LCA转RMQ入门题】

How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2015年08月09日 11:05
  • 390

hdu 2586 How far away ? 最近公共祖先lca 在线算法(倍增法)/离线算法(Tarjan算法)

#pragma comment(linker, "/STACK:1024000000,1024000000") #include #include #include #include #i...
  • a601025382s
  • a601025382s
  • 2013年08月30日 16:44
  • 3791

hdu 2586 LCA模板题(离线和在线两种解法)

http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vill...
  • u013573047
  • u013573047
  • 2015年03月01日 10:51
  • 2473

hdu 2586 How far away ? LCA离线算法

题目链接 题意:给出n个点,n-1条边,保证每两个点之间的路径唯一,回答m个距离询问。 LCA离线算法 tarjan模板。 #include #include #include #includ...
  • zchahaha
  • zchahaha
  • 2016年04月28日 20:14
  • 309
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 2586 How far away ? lca 在线和离线算法
举报原因:
原因补充:

(最多只允许输入30个字)