判断一个死事务的恢复进度

原创 2007年09月27日 19:30:00
昨天碰到一个问题,在启用SMON的串行恢复后,对于一个死事务,如何观察其恢复进度。

由于死事务已经无法通过v$transaction来观察,所以必须通过内部表来进行判断。
这个内部表是x$ktuxe,该表会记录Dead事务的恢复进度:

17:30:37 SQL> select distinct KTUXECFL,count(*) from x$ktuxe group by KTUXECFL;

KTUXECFL                  COUNT(*)
------------------------ ----------
DEAD                              1
NONE                          2393
SCO|COL                          8

可以通过观察KTUXESIZ字段来评估恢复进度:
16:59:47 SQL> select ADDR,KTUXEUSN,KTUXESLT,KTUXESQN,KTUXESIZ
            2 from x$ktuxe where  KTUXEUSN=10 and KTUXESLT=39;

ADDR              KTUXEUSN  KTUXESLT  KTUXESQN  KTUXESIZ
---------------- ---------- ---------- ---------- ----------
FFFFFFFF7D07B91C        10        39    2567412    1086075
17:02:12 SQL> select ADDR,KTUXEUSN,KTUXESLT,KTUXESQN,KTUXESIZ
            2 from x$ktuxe where  KTUXEUSN=10 and KTUXESLT=39;

ADDR              KTUXEUSN  KTUXESLT  KTUXESQN  KTUXESIZ
---------------- ---------- ---------- ---------- ----------
FFFFFFFF7D07B91C        10        39    2567412    1086067

根据评估,这个事务回滚需要大约2.55天,我Ft:
17:08:28 SQL> declare
17:10:22  2  l_start number;
17:10:22  3  l_end    number;
17:10:22  4  begin
17:10:22  5    select ktuxesiz into l_start from x$ktuxe where  KTUXEUSN=10 and KTUXESLT=39;
17:10:22  6    dbms_lock.sleep(60);
17:10:22  7    select ktuxesiz into l_end from x$ktuxe where  KTUXEUSN=10 and KTUXESLT=39;
17:10:22  8    dbms_output.put_line('time est Day:'|| round(l_end/(l_start -l_end)/60/24,2));
17:10:22  9  end;
17:10:22  10  /
time est Day:2.55

这是非常有用的一个内部表,大家可以参考一下。
 
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

c# 进度条BackgroundWorker 组件用来执行诸如数据库事务、文件下载等耗时的异步操作

BackgroundWorker 组件用来执行诸如数据库事务、文件下载等耗时的异步操作。 开始 在应用程序中添加一个BackgroundWorker实例,如果用的是VS,可以从工具上直接拖...

实现一个简单的进度条

提纲:本文主要说明了Linux系统和Windows系统下回车和换行的区别,以及Linux下缓冲区的问题,最后运用这两点知识实现一个简单的进度条。 一、关于回车和换行 不同操作系统下的回车和换行 ...

css样式实现一个进度条

效果如图代码 <meta name="Keywords"

iOS UIBezierPath 通过贝塞尔曲线画圆环 创建一个环形进度指示器

UIBezierPath *path = [UIBezierPath bezierPathWithArcCenter:CGPointMake(100, 100) radius:30 startAngl...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)