Flex 拖拽范例 二

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" width="400" height="400" backgroundColor="#FFFFFF" creationComplete="initApp()" layout="absolute">
  <mx:Script>
    <![CDATA[
      import mx.controls.DataGrid;
      import mx.controls.Image;
      import mx.collections.ArrayCollection;
      import mx.events.DragEvent;
      import mx.managers.DragManager;
      import mx.core.DragSource;
      [Bindable]
      public var total:Number=0;
      [Bindable]
      public var cartContents:ArrayCollection;
      private function initApp():void{
        this.cartContents=new ArrayCollection();
      }
      private function dragIt(event:MouseEvent,name:String,price:Number):void{
        //CurrentTarget指定要实现拖拽事件的初始化目标
        var dragInitiator:Image=event.currentTarget as Image;
        //指定一个dragSource来包括拖拽过程中包含的数据的对象
        var dragSource:DragSource=new DragSource();
        //向对象添加数据
        dragSource.addData(name,'name');
        dragSource.addData(price,'price');
        //创建一个拖拽对象的代理作为拷贝
        var dragProxy:Image=new Image();
        dragProxy.source=event.currentTarget.source;
        //使用DragManager静态方法doDrag开始拖拽
        DragManager.doDrag(dragInitiator,dragSource,event,dragProxy);
      }
      private function dragEnterHandler(event:DragEvent):void{
        var dropTarget:DataGrid=event.currentTarget as DataGrid;
        if (event.dragSource.hasFormat('name') && event.dragSource.hasFormat('price')){
          DragManager.acceptDragDrop(dropTarget);
        }
      }
      private function dragDropHandler(event:DragEvent):void{
        var name:String= String(event.dragSource.dataForFormat('name'));
        var price:Number=Number(event.dragSource.dataForFormat('price'));
        this.cartContents.addItem({name:String(event.dragSource.dataForFormat('name')),price:String(event.dragSource.dataForFormat('price'))});
        total+=price;
      }
    ]]>
  </mx:Script>
  <mx:Canvas x="19" y="10">
  <mx:Image x="23" y="35" width="64" height="64" mouseMove="dragIt(event,'Dreamweaver',499);" source="@Embed(source='../assets/056.png')"/>
  <mx:Label x="41" y="107" text="499"/>
  <mx:Image x="23" y="133" width="64" height="64" mouseMove="dragIt(event,'Fireworks',299);"  source="@Embed(source='../assets/057.png')"/>
  <mx:Label x="41" y="205" text="299"/>
  <mx:Image x="23" y="231" width="64" height="64" mouseMove="dragIt(event,'Flash',599);" source="@Embed(source='../assets/059.png')"/>
  <mx:Label x="41" y="303" text="599"/>
  </mx:Canvas>
  <mx:Label x="210" y="61" text="购物篮" fontSize="12"/>
  <mx:DataGrid x="129.5" y="102" id="cart" dataProvider="{cartContents}" dragEnter="dragEnterHandler(event);" dragDrop="dragDropHandler(event);" height="165" fontSize="12">
    <mx:columns>
      <mx:DataGridColumn headerText="产品" dataField="name"/>
      <mx:DataGridColumn headerText="价格" dataField="price"/>
    </mx:columns>
  </mx:DataGrid>
  <mx:Label x="186" y="292" text="总计:{total}" fontSize="12"/>
  <mx:Label x="129.5" y="0" text="拖拽物品放入购物篮中" fontSize="12"/>
  <mx:HRule x="5" y="20" width="390"/>
  
</mx:Application>

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值