HDU1301 普里姆最小生成树

原创 2016年05月31日 01:02:58

Jungle Roads

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6317    Accepted Submission(s): 4591


Problem Description

The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems.

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.
 

Sample Input
9 A 2 B 12 I 25 B 3 C 10 H 40 I 8 C 2 D 18 G 55 D 1 E 44 E 2 F 60 G 38 F 0 G 1 H 35 H 1 I 35 3 A 2 B 10 C 40 B 1 C 20 0
 

Sample Output
216
30
很简单的最小生成树,注意下边界处理就可以了,我的这个就没注意卡在了F 0这种数据上
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define INF 0x3f3f3f
int main()
{
	int n,m,i,j,k;
	int temp1,temp2;
	char s1[30],s2[30];
	int e[30][30],dis[30],book[30];
	while (scanf("%d",&n)!=EOF&&n)
	{
		for (i = 1; i <= n; i++)
		{
			book[i] = 0;
			for (j = 1; j <= n; j++)
			{
				e[i][j] = INF;
			}
		}
		for (i = 1; i < n; i++)
		{
			scanf("%c%d", &s1[i], &temp1);
			for (j = 1; j <= temp1; j++)
			{
				scanf("%c%d", &s2[j], &temp2);
				e[i][j] = e[j][i] = temp2;
			}
		}
		for (i = 2; i <= n; i++)
		{
			dis[i] = e[1][i];
		}
		book[1] = 1;
		int count = 1;
		int sum = 0 , min;
		while (count < n)
		{
			min = INF;
			for (i = 1; i <= n; i++)
			{
				if (book[i] == 0 && dis[i] < min)
				{
					min = dis[i];
					j = i;
				}
			}
			book[j] = 1;
			count++;
			sum += sum;

			for (k = 1; k <= n; k++)
			{
				if (book[k] == 0 && dis[k] > e[j][k])
				{
					dis[k] = e[j][k];
				}
			}
		}
		printf("%d\n", sum);
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

第十三周 项目一 最小生成树的普里姆算法

/* *Copyright (c) 2016,烟台大学计算机学院 *All rights reserved. *文件名称:graph.cpp *作者:衣龙川 *完成日期:...

最小生成树(MST)----普里姆(Prim)算法与克鲁斯卡尔(Kruskal)算法

1、概念:给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树. 2、应用:例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信...

最小生成树-普里姆方法(Prim)

生成树:保留一部分的边,使图连通但无回路。 普里姆方法(Prim)步骤: (1) 找最小边,及两个顶点为最初的树 (2) 与树相接的边中取权值最小的一条边 (3) 将边及相应顶点并入树 循环(2...

最小生成树 Prim(普里姆)算法和Kruskal(克鲁斯特尔)算法

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出

第十三周 项目1最小生成树的普里姆算法

问题及代码 (程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…) main.cpp /* Copyright (c)2016,烟台大学计算机...

普里姆(Prim)求最小生成树

一、普里姆(Prim)算法  1.基本思想:设G=(V, E)是具有n个顶点的连通网,T=(U, TE)是G的最小生成树, T的初始状态为U={u0}(u0∈V),TE={},重复执行下述操作:在所有...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)