# HDU1301 普里姆最小生成树

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6317    Accepted Submission(s): 4591

Problem Description

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above.

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit.

Sample Input
9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output
216
30

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define INF 0x3f3f3f
int main()
{
int n,m,i,j,k;
int temp1,temp2;
char s1[30],s2[30];
int e[30][30],dis[30],book[30];
while (scanf("%d",&n)!=EOF&&n)
{
for (i = 1; i <= n; i++)
{
book[i] = 0;
for (j = 1; j <= n; j++)
{
e[i][j] = INF;
}
}
for (i = 1; i < n; i++)
{
scanf("%c%d", &s1[i], &temp1);
for (j = 1; j <= temp1; j++)
{
scanf("%c%d", &s2[j], &temp2);
e[i][j] = e[j][i] = temp2;
}
}
for (i = 2; i <= n; i++)
{
dis[i] = e[1][i];
}
book[1] = 1;
int count = 1;
int sum = 0 , min;
while (count < n)
{
min = INF;
for (i = 1; i <= n; i++)
{
if (book[i] == 0 && dis[i] < min)
{
min = dis[i];
j = i;
}
}
book[j] = 1;
count++;
sum += sum;

for (k = 1; k <= n; k++)
{
if (book[k] == 0 && dis[k] > e[j][k])
{
dis[k] = e[j][k];
}
}
}
printf("%d\n", sum);
}
return 0;
}

• 本文已收录于以下专栏：

## MFC用普里姆算法实现最小生成树

• 2011-05-07 11:15
• 32KB
• 下载

## 用普里姆(Prim)算法构造最小生成树

• 2009-10-13 21:13
• 200KB
• 下载

## 最小生成树（MST）----普里姆（Prim）算法与克鲁斯卡尔（Kruskal）算法

1、概念：给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树. 2、应用：例如：要在n个城市之间铺设光缆，主要目标是要使这 n 个城市的任意两个之间都可以通信...

## 普里姆（Prim）求最小生成树

举报原因： 您举报文章：深度学习：神经网络中的前向传播和反向传播算法推导 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)