BZOJ 1195 [HNOI2006]最短母串 状压DP

题意:
给定n个串,寻找一个最短的串使得所有的串都是这个串的子串,如果存在多条最短的串,则输出字典序最小的。
解析:
n<=12所以我们可以考虑状压压缩一下。
f[i][j]表示状态为i,最后一次选取j的最小长度。
(第一眼我以为是求最小长度……)
然后发现如果求串的话,这一个东西不够。
所以我们还需要记录f[i][j]这个状态下的字典序最小的串是啥。
求答案的时候扫一遍f[endstatus][i]即可。
然后精妙地卡一卡内存就可过了。
这道题从1k写到3.7k….
代码:

#include <cstdio>
#include <cstring>
#define N 15
#define M 4100
#define base 131
#define INF 0x3f3f3f3f
typedef unsigned int ull;
int n;
ull pow[51];
char tmp[610];
char ans[610];
int min(int x,int y)
{
    return x>y?y:x;
}
struct String
{
    char s[51];
    ull hash[51];
    int len;
    ull get_hash(int l,int r)
    {
        return hash[r]-hash[l-1]*pow[r-l+1]; 
    }
}c[13];
int f[4096][13];
char fa[4096][13][601];
int cost[13][13];
int calc(int x,int y)
{
    int ret=0;
    int up=min(c[x].len,c[y].len);
    int flag=0;
    if(c[y].len<c[x].len)flag=1;
    for(int i=1;i<=up;i++)
    {
        if(flag)
        {
            for(int j=1;j<=c[x].len-c[y].len+1;j++)
            {
                if(c[x].get_hash(j,j+c[y].len-1)==c[y].hash[c[y].len])
                    return -1;
            }
        }
        if(c[x].get_hash(c[x].len-i+1,c[x].len)==c[y].get_hash(1,i))
            ret=i;
    }
    return c[y].len-ret;
}
int main()
{
    scanf("%d",&n);
    pow[0]=1;
    for(int i=1;i<=50;i++)
        pow[i]=pow[i-1]*base;
    for(int i=1;i<=n;i++)
    {
        scanf("%s",c[i].s+1);
        c[i].len=strlen(c[i].s+1);
        for(int j=1;j<=c[i].len;j++)
        {
            c[i].hash[j]=c[i].hash[j-1]*base+c[i].s[j];
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(i==j)continue;
            cost[i][j]=calc(i,j);
        }
    }
    for(int i=0;i<=(1<<n)-1;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=50;k++)
                fa[i][j][k]='z';
    memset(f,0x3f,sizeof(f));
    for(int i=1;i<=n;i++)
    {
        f[1<<(i-1)][i]=c[i].len;
        for(int j=1;j<=c[i].len;j++)
            fa[1<<(i-1)][i][j]=c[i].s[j];
        fa[1<<(i-1)][i][c[i].len+1]='\0';
    }
    for(int j=0;j<=(1<<n)-1;j++)
    {
        for(int i=1;i<=n;i++)
        {
            if(!(j&(1<<(i-1))))
            {
                for(int k=1;k<=n;k++)
                {
                    if(j&(1<<(k-1)))
                    {
                        if(cost[k][i]==-1)
                        {
                            if(f[j][k]<f[j|(1<<(i-1))][k])
                            {
                                f[j|(1<<(i-1))][k]=f[j][k];
                                for(int l=1;l<=f[j][k];l++)
                                    fa[j|(1<<(i-1))][k][l]=fa[j][k][l];
                                fa[j][k][f[j][k]+1]='\0';
                            }else if(f[j|(1<<(i-1))][k]==f[j][k]&&f[j][k]!=INF)
                            {
                                for(int l=1;l<=f[j][k];l++)
                                    tmp[l]=fa[j][k][l];
                                if(strcmp(tmp+1,fa[j|(1<<(i-1))][k]+1)<0)
                                {   
                                    for(int l=1;l<=f[j][k];l++)
                                        fa[j|(1<<(i-1))][k][l]=tmp[l];
                                    fa[j|(1<<(i-1))][k][f[j][k]+1]='\0';
                                }
                            }
                        }else
                        {
                            if(f[j][k]+cost[k][i]<f[j|(1<<(i-1))][i])
                            {
                                f[j|(1<<(i-1))][i]=f[j][k]+cost[k][i];
                                for(int l=1;l<=f[j][k];l++)
                                    fa[j|(1<<(i-1))][i][l]=fa[j][k][l];
                                for(int l=c[i].len-cost[k][i]+1;l<=c[i].len;l++)
                                    fa[j|(1<<(i-1))][i][l-c[i].len+cost[k][i]+f[j][k]]=c[i].s[l];
                                fa[j|(1<<(i-1))][i][f[j|(1<<(i-1))][i]+1]='\0';
                            }
                            else if(f[j|(1<<(i-1))][i]==f[j][k]+cost[k][i]&&f[j|(1<<(i-1))][i]!=INF)
                            {
                                for(int l=1;l<=f[j][k];l++)
                                    tmp[l]=fa[j][k][l];
                                for(int l=c[i].len-cost[k][i]+1;l<=c[i].len;l++)
                                    tmp[l-c[i].len+cost[k][i]+f[j][k]]=c[i].s[l];
                                tmp[f[j][k]+cost[k][i]+1]='\0';
                                if(strcmp(tmp+1,fa[j|(1<<(i-1))][i]+1)<0)
                                {
                                    for(int l=1;l<=f[j][k]+cost[k][i];l++)
                                        fa[j|(1<<(i-1))][i][l]=tmp[l];
                                    fa[j|(1<<(i-1))][i][f[j][k]+cost[k][i]+1]='\0';
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    int mi=INF;
    for(int i=1;i<=n;i++){mi=min(mi,f[(1<<n)-1][i]);}
    for(int i=1;i<=mi;i++)
        ans[i]='z';
    for(int i=1;i<=n;i++)
    {
        if(f[(1<<n)-1][i]==mi)
        {
            if(strcmp(fa[(1<<n)-1][i]+1,ans+1)<0)
            {
                memcpy(ans+1,fa[(1<<n)-1][i]+1,sizeof(char)*mi);
            }
        }
    }
    printf("%s\n",ans+1);
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值