机器学习——朴素贝叶斯算法

概率论是许多机器学习算法的基础,朴素贝叶斯就是基于概率来进行分类的方法。18世纪的一位神学家托马斯·贝叶斯率先引入先验知识和逻辑推理来处理不确定命题。

贝叶斯准则告诉我们如何较好条件概率中的条件与结果,即如果已知,要求,那么可以使用下面的方法:


即有,使用贝叶斯准则,可以通过已知的三个概率来计算未知的概率值。

朴素贝叶斯的一般执行过程如下:

(1)收集数据

(2)准备数据:需要数值型或者布尔型数据。

(3)分析数据:有大量特征时,绘制特征作用不大,此时使用直方图效果更好。

(4)训练算法:计算不同独立特征的条件概率。

(5)测试算法:计算错误率。

(6)使用算法:可以在任意的分类场景中使用贝叶斯。

由统计学知,如果每个特征需要N个样本,那么对于10个特征将需要N^10个样本,所需样本数会随着特征数目增大而迅速增长。如果特征之间相互独立,那么样本数就可以从N^10减少到N*10。所谓的独立,指的是统计意义上的独立,即一个特征或单词出现的可能性与其它的各个单词无关。这也是朴素一词的含义。而且朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

下面是使用朴素贝叶斯算法进行垃圾邮件过滤的实例。

假设我们的邮件数据存储在文本中,那么下面开始解析文本数据:

def textParse(bigString):   
    import re
    listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]

该函数使用正则表达式按单词对字符串进行拆分,最后保存了长度大于2且被转换为小写的词汇使用情况。下面的函数根据文本中出现的单词的情况,得到不同词汇的集合:

def createVocabList(dataSet):
    vocabSet = set([])  
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)

下面的函数根据文本情况创建词汇向量:

def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
return returnVec

vocabList是前面我们得到的所有不同词汇的集合inputSet是需要转换为词汇向量的单词列表。该函数返回了一个向量,其中的值都为0或1,表示词汇列表中某个词是否在该文本中出现。

使用朴素贝叶斯时,首先可以通过类别i(垃圾邮件或正常邮件)中文档数除以总的文档数来计算该类概率;接着计算,式中的w表示词汇向量,这里就要用到朴素贝叶斯假设。如果将w展开为一个个独立特征,那么就可以将上述该类写作。这里假设所有词都相互独立,该假设也称作条件独立性假设,它意味着可以使用来计算上述概率,这为我们带来了极大的方便。

根据以上的分析,我们可以得到如下的初步分类器函数:

#函数的输入参数一次为:文档矩阵trainMatrix(存储各个词汇的出现情况)和每篇文档类别标签所构成的向量trainCategory(存储各篇文档的分类情况)
def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)	#获取文档数
    numWords = len(trainMatrix[0])	#需考虑地词汇数量
pAbusive = sum(trainCategory)/float(numTrainDocs)#侮辱性评论的百分比
#初始化相关参数-------1
p0Num = zeros(numWords); p1Num = zeros (numWords) #两个0向量 
p0Denom = 0.0; p1Denom = 0.0                       
#循环查看每种分类中词汇的出现情况
 for i in range(numTrainDocs):
        if trainCategory[i] == 1:#为侮辱性文档
            p1Num += trainMatrix[i]	#计算各词汇出现次数
            p1Denom += sum(trainMatrix[i])#累加文档的总词汇出现次数
        else:			#非侮辱性文档
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
   #计算各种词汇的出现百分比-------2
 p1Vect = p1Num/p1Denom #在NumPy中为向量的个元素都除以对应的数值         
    p0Vect = p0Num/p0Denom          
return p0Vect,p1Vect,pAbusive

这就是我们得到的最初版本,但是它存在以下的问题。首先,如果我们在计算概率时,其中有一个值为0,那么最后的乘积也将为0。为了降低这种影响,可以将所有词的出现次数初始化为1,并将分母初始化为2。即将上述代码中标为1的代码块做如下的修改:

p0Num = ones(numWords); p1Num = ones (numWords) #两个1向量
p0Denom = 2.0; p1Denom = 2.0

另一个问题是下溢出,这是由于太多很小的数相乘所造成的。在计算时,由于大部分分子都非常小,所以程序会下溢出或者得不到正确答案(乘数太小,最后四舍五入会得到0)。解决的办法是对乘数取自然对数。在代数中有:,通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会对我们的分析结果带来其它影响,这是因为f(x)与In(f(x))在相同的区域内具有相同的单调性,并且在相同的点上取到极值。虽然它们取值并不相同,但在计算概率时的相对大小并不会发生改变。我们将上述代码中标为2的代码块做如下的修改:

p1Vect = log(p1Num/p1Denom)         
p0Vect = log(p0Num/p0Denom)

最终的分类训练器函数如下:

def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    numWords = len(trainMatrix[0])
    pAbusive = sum(trainCategory)/float(numTrainDocs)
    p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
    p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
    p1Vect = log(p1Num/p1Denom)          #change to log()
    p0Vect = log(p0Num/p0Denom)          #change to log()
return p0Vect,p1Vect,pAbusive

完成训练步骤之后就是执行分类操作了,具体的实现代码比较简单,如下:

#输入参数依次为:待分类的文档词汇向量;0类各词汇出现概率的训练结果;1类各词汇出现概率的训练结果;1类出现的概率。
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
   #我们在计算p0Vec和p1Vec时都是取了对数的,这里用sum其实就相当于在不取对数时的乘法操作
p1 = sum(vec2Classify * p1Vec) + log(pClass1)   
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else: 
        return 0

函数中分别计算了输入向量所对应文档属于1类和0类的概率,其中sum(vec2Classify * piVec)代表的是,log(pClassi)代表的是然后将该文档归类至概率较大的那一类中即完成了朴素贝叶斯的分类操作。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值