- 博客(5)
- 资源 (9)
- 收藏
- 关注
原创 机器学习方法(七):Kmeans聚类K值如何选,以及数据重抽样方法Bootstrapping
本篇介绍了聚类如何选择K的一种方法(实际上,除了kmeans以外,还可以用于很多其他的聚类方法,如果他们也要确定k。)。该方法使用的Parametric bootstrap来抽样,是统计中bootstrap方法的一种类型。我们还介绍了基本的bootstrap方法,有放回的抽取,以及更平滑的smooth bootstrap方法,这些算法都是简单而有道理
2016-02-15 22:42:30
27507
原创 深度学习方法(六):神经网络weight参数怎么初始化
神经网络,或者深度学习算法的参数初始化是一个很重要的方面,传统的初始化方法从高斯分布中随机初始化参数。甚至直接全初始化为1或者0。这样的方法暴力直接,但是往往效果一般。本篇文章的叙述来源于一个国外的讨论帖子[1],下面就自己的理解阐述一
2016-02-12 17:27:51
27136
1
转载 光流optical flow基本原理与实现
光流(optical flow)是什么呢?名字很专业,感觉很陌生,但本质上,我们是最熟悉不过的了。因为这种视觉现象我们每天都在经历。从本质上说,光流就是你在这个运动着的世界里感觉到的明显的视觉运动(呵呵,相对论,没有绝对的静止,也没有绝对的运动)。例如,当你坐在火车上,然后往窗外看。你可以看到树、地面、建筑等等,他们都在往后退。这个运动就是光流。而且,我们都会发现,他们的运动速度居然不一样?这就给我们提供了一个挺有意思的信息:通过不同目标的运动速度判断它们与我们的距离。一些比较远的目标,例如云、山,它们移动
2016-02-10 21:53:44
20546
转载 False Positives和False Negative等含义
True Positive (真正, TP)被模型预测为正的正样本;True Negative(真负 , TN)被模型预测为负的负样本 ;False Positive (假正, FP)被模型预测为正的负样本;False Negative(假负 , FN)被模型预测为负的正样本;
2016-02-03 22:05:45
24368
A disciplined approach to neural network hyper-parameters Part I
2020-02-09
Reinforcement Learning an Introduction,2018最新版(第二版)
2018-01-13
Matplotlib.ipynb
2020-02-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人