关闭

TruePositive+FalsePostive & F-Measure

650人阅读 评论(0) 收藏 举报
分类:

1. TruePositive + FalsePostive + FalseNegative + TrueNegative


The illustration of four metrics in Pattern Recognition are as follows:

1)True Positive: A sample is a positve one and is classified as Positive;

2)False Negative: A sample is a positive one and is classified as Negative;

3)True Negative: A sample is a negative one and is classified as Negative;

4)False Negative: A sample is a negative one and is classified as Positive.

                                                    Predicted Class Label              

                                                P                                       N                    

                                          ___________________________________   

Actual Class Label   P       True  Positive(TP)            False Negative(FN)

                                          ___________________________________    

                                N       False Positive(FP)           True   Negative(TN)


2. Recall + Precision


Recall: related to the samples with actual label of Positive; it is calculated with the formula:

              Recall(%) = TP/(TP+FN)x100%

Precision:related to the samples classified as Positive; it is calculated with the formula:

              Precision(%) = TP/(TP+FP)x100% 


3. F-Measure

F-Measure is another metric for describe the classification performance of the system. It is calculated through the Recall (R) and Precision (P) rate as follows:


          F = {(a*a + 1)P*R}/{a*a(P+R)}

When a = 1, the measure becomes F1-Measure:

          F1 = 2P*R/(P+R)




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15458次
    • 积分:265
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:3篇
    • 译文:0篇
    • 评论:2条
    文章分类
    最新评论