TruePositive+FalsePostive & F-Measure

原创 2013年12月02日 17:23:07

1. TruePositive + FalsePostive + FalseNegative + TrueNegative


The illustration of four metrics in Pattern Recognition are as follows:

1)True Positive: A sample is a positve one and is classified as Positive;

2)False Negative: A sample is a positive one and is classified as Negative;

3)True Negative: A sample is a negative one and is classified as Negative;

4)False Negative: A sample is a negative one and is classified as Positive.

                                                    Predicted Class Label              

                                                P                                       N                    

                                          ___________________________________   

Actual Class Label   P       True  Positive(TP)            False Negative(FN)

                                          ___________________________________    

                                N       False Positive(FP)           True   Negative(TN)


2. Recall + Precision


Recall: related to the samples with actual label of Positive; it is calculated with the formula:

              Recall(%) = TP/(TP+FN)x100%

Precision:related to the samples classified as Positive; it is calculated with the formula:

              Precision(%) = TP/(TP+FP)x100% 


3. F-Measure

F-Measure is another metric for describe the classification performance of the system. It is calculated through the Recall (R) and Precision (P) rate as follows:


          F = {(a*a + 1)P*R}/{a*a(P+R)}

When a = 1, the measure becomes F1-Measure:

          F1 = 2P*R/(P+R)




准确率 召回率 F-Measure

著作权归作者所有。 商业转载请联系作者获得授权,非商业转载请注明出处。 作者:付滨 链接:http://www.zhihu.com/question/19645541/answer/12502751 ...
  • u013751758
  • u013751758
  • 2016年02月18日 11:30
  • 1314

F-measure

F1-Measure F-Measure又称为F-Score,是IR(信息检索)领域的常用的一个评价标准,计算公式为: 其中 是参数,P是精确率(Precision),R是召回率(R...
  • Fisher_n
  • Fisher_n
  • 2014年12月21日 09:37
  • 481

Basic Introduction of Multi-label Learning

Traditional supervised learning is one of the mostly-studied machine learning paradigms, where each ...
  • Randolph_Lee
  • Randolph_Lee
  • 2017年04月05日 09:31
  • 175

机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy

机器学习常见评价指标:AUC、Precision、Recall、F-measure、Accuracy 主要内容 AUC的计算 Precision、Recall、F-measure、Accuracy的...
  • zhihua_oba
  • zhihua_oba
  • 2017年11月30日 16:11
  • 214

Precision, Recall and F-measure

Precision 和Recall是信息检索领域的常用评价指标。就直观意义而言,前者强调检索的精度,也即在所有检测到的结果中有多少是真正相关的;后者则强调检索的完整性,也成为查全率,关注在所有的相关记...
  • Moon_flower
  • Moon_flower
  • 2015年10月22日 21:17
  • 168

推荐系统评测指标:F-Measure

参考自:百度百科 F-Measure又称为F-Score,是IR(信息检索)领域的常用的一个评价标准,计算公式为: 其中 是参数,P是精确率(Precision)...
  • baidu_22531537
  • baidu_22531537
  • 2015年05月12日 15:01
  • 800

F1-Measure

准确率(Precision)、召回率(Recall)以及综合评价指标(F1-Measure) 在信息检索和自然语言处理中经常会使用这些参数,下面简单介绍如下: 准确率与召回率(Precisio...
  • robinson111
  • robinson111
  • 2014年08月30日 01:15
  • 1383

Percision Recall F-Measure

为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化。 由于IR的目标是...
  • michelle190
  • michelle190
  • 2014年10月29日 11:39
  • 476

信息检索中常用的评价指标:MAP,nDCG,ERR,F-measure

知识点文本检索常用的评价指标:MAP、nDCG、ERR、F-score/F-measure以及附加的Precision、Recall、AveP、CG、DCG、IDCG、MRR、cascade mode...
  • u010138758
  • u010138758
  • 2017年04月10日 01:14
  • 2176

评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化。 由于IR的目标是在较...
  • zhu_9527
  • zhu_9527
  • 2014年08月25日 15:01
  • 611
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TruePositive+FalsePostive & F-Measure
举报原因:
原因补充:

(最多只允许输入30个字)