TruePositive+FalsePostive & F-Measure

650人阅读 评论(0)

1. TruePositive + FalsePostive + FalseNegative + TrueNegative

The illustration of four metrics in Pattern Recognition are as follows:

1)True Positive: A sample is a positve one and is classified as Positive;

2)False Negative: A sample is a positive one and is classified as Negative;

3)True Negative: A sample is a negative one and is classified as Negative;

4)False Negative: A sample is a negative one and is classified as Positive.

Predicted Class Label

P                                       N

___________________________________

Actual Class Label   P       True  Positive(TP)            False Negative(FN)

___________________________________

N       False Positive(FP)           True   Negative(TN)

2. Recall + Precision

Recall: related to the samples with actual label of Positive; it is calculated with the formula:

Recall(%) = TP/(TP+FN)x100%

Precision:related to the samples classified as Positive; it is calculated with the formula:

Precision(%) = TP/(TP+FP)x100%

3. F-Measure

F-Measure is another metric for describe the classification performance of the system. It is calculated through the Recall (R) and Precision (P) rate as follows:

F = {(a*a + 1)P*R}/{a*a(P+R)}

When a = 1, the measure becomes F1-Measure:

F1 = 2P*R/(P+R)

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：15458次
• 积分：265
• 等级：
• 排名：千里之外
• 原创：11篇
• 转载：3篇
• 译文：0篇
• 评论：2条
文章分类
评论排行
最新评论