TruePositive+FalsePostive & F-Measure

原创 2013年12月02日 17:23:07

1. TruePositive + FalsePostive + FalseNegative + TrueNegative


The illustration of four metrics in Pattern Recognition are as follows:

1)True Positive: A sample is a positve one and is classified as Positive;

2)False Negative: A sample is a positive one and is classified as Negative;

3)True Negative: A sample is a negative one and is classified as Negative;

4)False Negative: A sample is a negative one and is classified as Positive.

                                                    Predicted Class Label              

                                                P                                       N                    

                                          ___________________________________   

Actual Class Label   P       True  Positive(TP)            False Negative(FN)

                                          ___________________________________    

                                N       False Positive(FP)           True   Negative(TN)


2. Recall + Precision


Recall: related to the samples with actual label of Positive; it is calculated with the formula:

              Recall(%) = TP/(TP+FN)x100%

Precision:related to the samples classified as Positive; it is calculated with the formula:

              Precision(%) = TP/(TP+FP)x100% 


3. F-Measure

F-Measure is another metric for describe the classification performance of the system. It is calculated through the Recall (R) and Precision (P) rate as follows:


          F = {(a*a + 1)P*R}/{a*a(P+R)}

When a = 1, the measure becomes F1-Measure:

          F1 = 2P*R/(P+R)




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

分类、推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) /(F-score)

对一些分类、推荐系统的评测指标如准确率(Precision)、召回率(Recall)和综合指标(F-measure)作了说明。

Recall(召回率) Precision(准确率) F-Measure E值 sensitivity(灵敏性) specificity(特异性)漏诊率 误诊率 ROC AUC

Recall(召回率) Precision(准确率) F-Measure E值 sensitivity(灵敏性) specificity(特异性)漏诊率 误诊率 ROC AUC信息检索、分类、识别、翻...

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

在信息检索、分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总。 准确率、召回率、F1 信息检索、分类、识别、翻译等领域两...
  • tsroad
  • tsroad
  • 2015-12-12 16:07
  • 3134

机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线

以下第一部分内容转载自:机器学习算法中的准确率(Precision)、召回率(Recall)、F值(F-Measure)是怎么一回事摘要:数据挖掘、机器学习和推荐系统中的评测指标—准确率(Precis...

评估指标:准确率(Precision)、召回率(Recall)以及F值(F-Measure)

为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化。 由于IR的目标是在较...

准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC、AUC

下面简单列举几种常用的推荐系统评测指标: 1、准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。...

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) (机器学习算法评测指标 )        下面简单列举几种常用的推荐系统评测指标: 1、...

Percision Recall F-Measure

为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化。 由于IR的目标是...

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

下面简单列举几种常用的推荐系统评测指标: 1、准确率与召回率(Precision & Recall)准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)