关闭

[SCOI2007]排列perm

标签: 状态压缩DP
147人阅读 评论(0) 收藏 举报
分类:

Description

给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。

Sample Input

7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29

Sample Output

1
3
3628800
90
3
6
1398

我一开始想到的是排列。呃……果断超时。
后来呢,想到了01之类的二进制来表示存不存在该点,于是就用状压。
f[i][j]表示的是i号状态,当前总和mod(d)的余数是j。
顺序是不用担心的,因为你是按照顺序累加一个状态的和的。
那么我们就可以每次累加一个新数位k,判断它在i状态里是否存在,不存在就新生成一个新状态,这个状态的值加上老状态的值。
DP方程就是:DP[i|(1<<(k-1))][(j*10+ss[k]-‘0’)%d]+=DP[i][j];(ss[k]-‘0’为i数位的值)
最后还要注意哦,有可能两个数字相同就会统计多次(恶心+讨厌),所以要去重。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1<<11][1100],n,d,num[10];
int bin[11];
char ss[11];
int main()
{
    int tt;scanf("%d",&tt);
    bin[0]=1;for(int i=1;i<=9;i++)bin[i]=i*bin[i-1];
    while(tt--)
    {
        scanf("%s%d",ss+1,&d);
        int len=strlen(ss+1);
        memset(num,0,sizeof(num));
        for(int i=1;i<=len;i++)num[ss[i]-'0']++;
        memset(f,0,sizeof(f));f[0][0]=1;
        for(int i=0;i<(1<<len);i++)
        {
            for(int j=0;j<d;j++)
            {
                if(f[i][j])
                {
                    for(int k=1;k<=len;k++)
                    {
                        if(((1<<(k-1))&i)==0)
                        {
                            f[i|(1<<(k-1))][(j*10+ss[k]-'0')%d]+=f[i][j];
                        }
                    }
                }
            }
        }
        int ans=f[(1<<len)-1][0];
        for(int i=0;i<=9;i++)ans/=bin[num[i]];
        printf("%d\n",ans);
    }
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:5518次
    • 积分:358
    • 等级:
    • 排名:千里之外
    • 原创:26篇
    • 转载:4篇
    • 译文:0篇
    • 评论:20条
    最新评论