tarjan离线求lca

原创 2016年08月30日 20:51:47

lca即为最近公共祖先,通过dfs遍历一棵树即可无顺序地求出lca

思路:先找出根节点,用有向边连树,进行dfs,因为每个节点最多被遍历一次,因此复杂度为O(n);

运用并查集,在遍历子树的时候将子树中所有的元素连接到子树的根节点上,此处需要用到并查集,因为并查集时间复杂度极小。

注意,是在回溯时才进行连接,因为如果在遍历时进行,则无法查到现在的lca,因为所有的节点都被连接在了第一个根节点上,

这样就求不出来了。为什么可行?

因为两个节点要么分别在两颗子树上,要么为祖先关系,当分别在两颗子树上时,遍历到其中一个点时,其lca还没有回溯,因此

可以查到其lca。第二种,则其中一点为另外一点根节点,只要两个点都被标记成访问,则其lca连回溯都没有回溯,直接返回就可

以了。

代码:

#include <set>
#include <map>
#include <queue>
#include <deque>
#include <cstdio>
#include <string>
#include <vector>
#include <math.h>
#include <time.h>
#include <utility>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <stdio.h>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
int n,t,x,y,u,v;
vector<int>graph[10010];
int father[10010],rank[10010],used[10010],out[10010];
bool flag;
int find(int x)
{
    if(x!=father[x])
    {
        father[x]=find(father[x]);
    }
    return father[x];
}
void connect(int x,int y)
{
    int a=find(x);
    int b=find(y);
    if(a==b)return;
    if(rank[a]>=rank[b])
    {
        rank[a]+=rank[b];
        father[b]=a;
    }
    else
    {
        rank[b]+=rank[a];
        father[a]=b;
    }
}
void tarjan(int u)
{
    if(flag)
    {
        return;
    }
    used[u]=1;
    for(int i=0;i<graph[u].size();i++)
    {
        int v=graph[u][i];
        tarjan(v);
        if(flag)return;
        connect(u,v);
        father[find(u)]=u;
        father[u]=u;
    }
    used[u]=1;
    if(u==x&&used[y])
    {
        printf("%d\n",find(y));
        flag=true;
        return;
    }
    if(u==y&&used[x])
    {
        printf("%d\n",find(x));
        flag=true;
        return;
    }
}
int main()
{
    cin>>t;
    while(t--)
    {
        flag=false;
        cin>>n;
        memset(father,0,sizeof(father));
        memset(rank,0,sizeof(rank));
        memset(used,0,sizeof(used));
        memset(out,0,sizeof(out));
        for(int i=1;i<=n;i++)
        {
            father[i]=i;
            rank[i]=1;
        }
        for(int i=1;i<n;i++)
        {
            cin>>u>>v;
            out[v]++;
            graph[u].push_back(v);
        }
        cin>>x>>y;
        for(int i=1;i<=n;i++)
        {
            if(!out[i])
            {
                tarjan(i);
                break;
            }
        }
        for(int i=1;i<=n;i++)
        {
            graph[i].clear();
        }
    }
    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

hdu2586 How far away? Tarjan(离线)算法求最近公共祖先LCA 待补完

首先关于什么事Tarjan算法和最近公共祖先,要先看这篇博客,讲的很详尽了: [最近公共祖先LCA(Tarjan算法)的思考和算法实现]原题: How far away ? Time L...
  • kyoma
  • kyoma
  • 2016年10月22日 20:37
  • 254

Tarjan离线算法求最近公共祖先(LCA)

转载注明出处:http://blog.csdn.net/u011400953 Tarjan离线算法求LCA介绍      前言:首先,本人搞懂Tarjan求最近公共祖先(LCA),也是...

Tarjan离线算法求LCA小结

求LCA的两种做法不多解释,这篇文章有详细解释。 以前以为转RMQ法求LCA可以取代tarjan,实则不然,Tarjan不仅效率更高,而且可以维护一些路径上的统计量。于是又离线Tarjan法做了一些...

poj 1470 Closest Common Ancestors 离线算法Tarjan求LCA

DescriptionWrite a program that takes as input a rooted tree and a list of pairs of vertices. For ea...

tarjan 离线求 lca (专题)

离线LCA的求法,相信大家都知道使用tarjan。该方法确实很巧妙,利用dfs的性质,假设u的父亲为fa,当以u为根节点的子树被访问完之后,那么任何与u同属于同一个父亲fa并且不包含在u的子树内的点,...

最小公共祖先(LCA)离线算法_Tarjan c++实现

#include #include #include #include using namespace std; struct Node { int val; vector chlid...
  • yxsh01
  • yxsh01
  • 2014年11月18日 20:40
  • 708

LCA 离线算法 tarjan 总结 与模板题

LCA问题为最近公共祖先问题,常见的有一种在线的算法和一种离线的算法。这里介绍一下离线的tarjan算法。 离线算法需要首先读入所有的查询,然后重新组织对查询处理的顺序来达到更高效的处理。 tar...
  • liujc_
  • liujc_
  • 2016年03月13日 16:04
  • 724

tarjan离线算法-LCA最近公共祖先算法模板(详细)

/********************************************/ /*****LCA最近公共祖先离线算法(tarjan)*****/ /******************...

树上两点的最近公共祖先-Tarjan_LCA离线算法

/* *算法引入: *树上两点的最近公共祖先; *对于有根树的两个结点u,v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u,v的祖先且x的深度尽可能大; *对于x来说,从u到v的...
  • Jarily
  • Jarily
  • 2013年05月19日 21:19
  • 8201

最形象的讲解,让你一次学会什么叫LCA离线算法tarjan

今天刚学了LCA离线tarjan算法。下面跟大家分享一下我的学习心得。 首先LCA是Lowest Common Ancestors的缩写。中文名为最近公共祖先。然后就是什么叫离线,与离线相对应的是在...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tarjan离线求lca
举报原因:
原因补充:

(最多只允许输入30个字)