关闭

Visual Studio 2008 环境变量的配置(参考设置VS2010)

本文转载自:http://blog.csdn.net/tracyliang223/article/details/21539361 COPY FROM:http://www.cnblogs.com/waterlin/archive/2011/10/31/2230341.html 在调试 Visual Studio 2008 程序时,经常有一些动态链接库(即 dll 文件)需...
阅读(15) 评论(0)

visual studio 2015安装 无法启动程序,因为计算机丢失D3DCOMPILER_47.dll 的解决方法

对于题目中的解决方法,我查到了微软提供的一个方案:https://support.microsoft.com/en-us/help/4019990/update-for-the-d3dcompiler-47-dll-component-on-windows 进入如下页面:http://www.catalog.update.microsoft.com/Search.aspx?q=KB4019990...
阅读(19) 评论(0)

正则表达式及其在python上的应用

今天学习了一早上正则表达式。如下内容部分转载自《读懂正则表达式就这么简单》  1.1 什么是正则表达式 正则表达式是一种特殊的字符串模式,用于匹配一组字符串,就好比用模具做产品,而正则就是这个模具,定义一种规则去匹配符合规则的字符。 1.2 常用的正则匹配工具 在线匹配工具:   1 http://www.regexpal.com/ 2 http://rubu...
阅读(21) 评论(0)

faster rcnn end2end 训练与测试

除了前面讲过的rpn与fast rcnn交替训练外,faster rcnn还提供了一种近乎联合的训练,姑且称为end2end训练。 根据论文所讲,end2end的训练一气呵成,对于前向传播,rpn可以作为预设的网络提供proposal.而在后向传播中,rpn,与fast rcnn分别传导,而汇聚到shared layer.,但是没有考虑掉roi pooling层对于predicted bound...
阅读(18) 评论(0)

faster rcnn的测试

当训练结束后,faster rcnn的模型保存在在py-faster-rcnn/output目录下,这时就可以用已有的模型对新的数据进行测试。 下面简要说一下测试流程。 测试的主要代码是./tools/test_net.py,并且使用到了fast_rcnn中test.py。   主要流程就是: 1. 读取imdb,主要就是测试数据的位置等信息。 2.   然后循环读取图片...
阅读(15) 评论(0)

faster rcnn在自己的数据集上训练

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。 一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下: VOCdevkit2007 └── VOC2007 ├── Annotations │...
阅读(21) 评论(0)

Iris recognition papers in the top journals in 2017

转载自:https://kiennguyenstuff.wordpress.com/2017/10/05/iris-recognition-papers-in-the-top-journals-in-2017/ Top journals: – IEEE Transaction on Pattern Analysis and Machine Intelligence (PAM...
阅读(13) 评论(0)

faster rcnn学习之rpn 的生成

接着上一节《 faster rcnn学习之rpn训练全过程》,假定我们已经训好了rpn网络,下面我们看看如何利用训练好的rpn网络生成proposal. 其网络为rpn_test.pt # Enter your network definition here. # Use Shift+Enter to update the visualization. name: "VGG_CNN_M_102...
阅读(33) 评论(0)

faster rcnn学习之rpn训练全过程

上篇我们讲解了rpn与fast rcnn的数据准备阶段,接下来我们讲解rpn的整个训练过程。最后 讲解rpn训练完毕后rpn的生成。 我们顺着stage1_rpn_train.pt的内容讲解。 name: "VGG_CNN_M_1024" layer { name: 'input-data' type: 'Python' top: 'data' top: 'im_info'...
阅读(42) 评论(0)

faster rcnn学习之rpn、fast rcnn数据准备说明

在上文《 faster-rcnn系列学习之准备数据》,我们已经介绍了imdb与roidb的一些情况,下面我们准备再继续说一下rpn阶段和fast rcnn阶段的数据准备整个处理流程。 由于这两个阶段的数据准备有些重合,所以放在一起说明。 我们并行地从train_rpn与train_fast_rcnn说起,这两个函数在train_faster_rcnn_alt_opt.py中。 def tra...
阅读(42) 评论(0)

Faster RCNN minibatch.py解读

minibatch.py 的功能是: Compute minibatch blobs for training a Fast R-CNN network. 与roidb不同的是, minibatch中存储的并不是完整的整张图像图像,而是从图像经过转换后得到的四维blob以及从图像中截取的proposals,以及与之对应的labels等在整个faster rcnn训练中,有两处用到了minibatch...
阅读(57) 评论(0)

py-faster-rcnn代码roidb.py的解读

roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。 在这里暂时记录下roidb的结构信息,后面继续看的时候可能会有些修正: roidb是由字典组成的li...
阅读(41) 评论(0)

faster-rcnn系列学习之准备数据

如下列举了 将数据集做成VOC2007格式用于Faster-RCNN训练的相关链接。 RCNN系列实验的PASCAL VOC数据集格式设置 制作VOC2007数据集用于Faster-RCNN训练 将数据集做成VOC2007格式用于Faster-RCNN训练 这一篇比较详细地介绍了如何制造voc2007的所有文件,内含相关软件和代码,值得一看。voc2007数据集的下载和解压...
阅读(45) 评论(0)

caffe 初学参考链接

最近在学习caffe,也搜集了一些资料,主要是一些网上公开的博客资源,现汇总一下,以便后面参考。caffe 安装 编译py-faster-rcnn全过程 caffe依赖库安装(非root) 编译py-faster-rcnn的问题汇总及解决方法 caffe 基本架构 python版本 Caffe for Python 官方教程(翻译) 官方提供的示例 官方提供的示例注释版 caffe 模型微调 py...
阅读(43) 评论(0)

conda环境管理介绍

我们可以使用conda 来切换不同的环境,主要的用法如下: 1. 创建环境 # 指定python版本为2.7,注意至少需要指定python版本或者要安装的包 # 后一种情况下,自动安装最新python版本 conda create -n env_name python=2.7 # 同时安装必要的包 conda create -n env_name numpy matplotlib pytho...
阅读(77) 评论(0)
199条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:238399次
    • 积分:3632
    • 等级:
    • 排名:第9960名
    • 原创:111篇
    • 转载:80篇
    • 译文:8篇
    • 评论:99条
    个人网站
    最新评论