关闭
当前搜索:

图像金字塔总结

本文转载自:http://blog.csdn.net/dcrmg/article/details/52561656     一、 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像...
阅读(161) 评论(0)

图像极坐标变换及在OCR中的应用

极坐标变换定义我们知道在二维坐标系中,有直角坐标系,也有极坐标系,二者的转换关系是: 如下图: 如图,直角坐标系的圆心与极坐标系的圆心一一对应,且圆弧BA可以通过极坐标变换到极坐标系ρ=r\rho=r的一条直线上,实现由圆形到直线的转换。这往往在一些图像处理中很有用。实际上,我们在图像处理中,往往还不是处理这样的圆弧,而更多的是处理圆环区域。如下, 同理,我们可以把(a...
阅读(190) 评论(0)

基于几何距离的椭圆拟合

问题给定离散点集Xi=(xi,yi)X_i=(x_i,y_i),我们希望找到最好的椭圆去拟合这些离散点。方法通常我们使用最小二乘法求解如下的最优化问题:Min∑i=1Nf(xi,E)2 Min \sum_{i=1}^N f(x_i,E)^2 这里f(xi,E)f(x_i,E) 表示点xix_i 到E(指待拟合的椭圆)的最小距离。通常我们有两种方法来表达f(xi,E)f(x_i,E) ,分别是:几...
阅读(1600) 评论(3)

基于代数距离的椭圆拟合

问题给定离散点集Xi=(xi,yi),i=1,2,...NX_i=(x_i,y_i) ,i=1,2,...N,我们希望找到误差最小的椭圆去拟合这些离散点。 方法由于椭圆的形式可以给定, 自然我们将使用最小二乘法来求解椭圆。主要依据论文《Direct least squares fitting of ellipsees, Fitzgibbon, Pilu and Fischer in Fitzgibb...
阅读(1419) 评论(2)

卷积的循环矩阵求解方法

通常我们求解一维卷积或者二维卷积都是采用模板平移的方法,今天我们介绍一种新的求解方法,可以一次性求出所有的结果。一维卷积卷积定义对于两个长度分别为m和n的序列x(i)和g(i)有, h(i)=x(i)∗g(i)=∑jx(j)g(i−j) h(i)=x(i)*g(i)=\sum_{j}x(j)g(i-j) 上式给出了长度为N=m+n-1的输出序列。称为一维情况下的卷积公式。循环矩阵参考百度百科:...
阅读(2100) 评论(0)

离散卷积与自相关

本文章转载自:http://www.cnblogs.com/einyboy/archive/2012/12/30/2839633.html 一、  定义 离散信号f(n),g(n)的定义如下:   N-----为信号f(n)的长度 s(n)----为卷积结果序列,长度为len(f(n))+len(g(n))-1 例: f(n) = [1 2 3];...
阅读(1357) 评论(0)

雅可比旋转求解对称二维矩阵的特征值和特征向量

问题描述:给定一个矩阵,如下: A=[a11a21a12a22] A=\begin{bmatrix} a_{11}&a_{12}\\ a_{21}& a_{22} \end{bmatrix} 其中满足a12=a21a_{12}=a_{21}.也就是所谓的对称矩阵。那么如何求解此矩阵的特征值以及特征向量呢?这里我们要用到雅克比旋转。雅克比旋转Jacobi方法是求对称矩阵的全部特征值以及相应的...
阅读(1263) 评论(2)

halcon相关的链接

论坛、培训 halcon学习网:http://www.ihalcon.com/ 鸟叔机器视觉:http://bbs.szvbt.com/forum.php 博客 韩兆新的博客园 majunfu Life and Coding zhaojun的博客 風韻無聲 骑蚂蚁上高速的博客 小马_xiaoLV2 小新识图 程序园-程序员的世界 章柯渊的博客 注:介绍了halcon与MFC混合编程! 新浪博客搜...
阅读(1067) 评论(0)

基于HALCON的模板匹配方法总结

很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间。去年有过一段时间的集中学习,做了许多的练习和实验,并对基于HDevelop的形状匹配算法的参数优化进行了研究,写了一篇《基于HDevelop的形状匹配算法参数的优化研究》文章,总结了在形状匹配过程中哪些参数影响到模板的搜索和匹配,又如何来协调这些参数来加快匹配过程,提高匹配的精度,这篇paper放到了中国论文在线了,需...
阅读(1384) 评论(0)

halcon模板匹配学习(二) 准备模板

如下,我们将介绍匹配的第一个操作:准备模板初始时刻,我们准备好参考图像,并对其做一定的处理,然后我们需要从参考图像中导出模板,也就是将参考图像裁剪成所谓的模板图像。获取模板图像可以通过设置ROI来完成。对于某些应用来说,也可以使用综合模板代替模版图像。综合模板既可以是综合创造的模板图像,也可以是一个XLD轮廓。裁剪参考图像,使之成为模板图像为了创建模板图像,我们需要从参考图像中选取ROI,并使用 r...
阅读(4483) 评论(0)

halcon模板匹配学习(一) Matching 初印象

什么是模板匹配呢?简单而言,就是在图像中寻找目标图像(模板),或者说,就是在图像中寻找与模板图像相似部分的一种图像处理技术。依赖于选择的方法不同,模板匹配可以处理各种情形下的变换,如照明、杂点、大小、位置以及旋转,甚至模版内部的相对移动。模版匹配的鲁棒性和灵活性都很高,而且很多参数可以自适应生成,只有极少的参数需要配置。在Halcon中,提供了各种不同的匹配方法。不同方法的选择依赖于图像数据以及要解...
阅读(4133) 评论(0)

灰度图像的8位平面分解

所谓灰度图像,即指8位256颜色的图像。将图像的每一位分别取出来,我们就可以将一幅图像分解开来,形成8幅图像。下面我们分别介绍使用matlab分解图像与使用halcon/c++分解图像的方法。 matlab8位分解 clc; clear all; A = imread('lena.tif'); % 显示原始图像 subplot(3,3,1); imshow(A);title('原始图像');...
阅读(3618) 评论(1)

halcon/c++接口基础 之 控制参数

HALCON/C++可以处理各种不同类型的字母数字混合的控制参数,如下: 离散数字(long) 浮点数字(double) 字符串(char*) 控制参数的一个特殊形式是句柄,提供了途径去访问复杂的数据类型,像windows,图像获取设备,用于形状匹配的模型。实际上,在内部,句柄总是以离散数字(long)表示。HALCON/C++使用tuple表示控制参数的容器类。另外,tuple是多态的,可以包含各...
阅读(1102) 评论(0)

halcon/c++接口基础 之 HALCON图像变量类

图像变量在HALCON/C++中,HObject是一个基类,可以表示图像变量。另外还有三种类继承自HObject. Class HImage 处理图像 Class HRegion 处理区域 Class HXLD 处理多边形 Regions一个region是图像平面坐标点的集合。这样一个区域不需要被连通,而且可能还有好多洞。a region可以比实际的图像大。区域在HALCON中可以用所谓的行程编码实...
阅读(4007) 评论(0)

halcon/c++接口基础 之异常处理

关于运行错误,HALCON/C++默认打印错误信息并且终止程序。然而在某些应用中,放宽这个法则可能更有用。比如,如果一个应用要求用户交互式地指定一个图像文件读取,如果因为用户不能拼错文件名而终止程序的话,会很不方便。因此,HALCON/C++允许集成你自己的错误处理代码。如下的章节将分别介绍面向对象的方法和面向过程的方法。面向对象的方法如果一个运行错误发生在面向对象的调用中,类HException的...
阅读(2713) 评论(0)
19条 共2页1 2 下一页 尾页
    个人资料
    • 访问:284573次
    • 积分:4122
    • 等级:
    • 排名:第8671名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论